# DAQ

# NI-DAQ<sup>™</sup> Function Reference Manual for PC Compatibles

Version 6.6
Data Acquisition Software for the PC



#### **Worldwide Technical Support and Product Information**

www.natinst.com

#### **National Instruments Corporate Headquarters**

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 794 0100

#### **Worldwide Offices**

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 284 5011, Canada (Calgary) 403 274 9391, Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, China 0755 3904939, Denmark 45 76 26 00, Finland 09 725 725 11, France 01 48 14 24 24, Germany 089 741 31 30, Greece 30 1 42 96 427, Hong Kong 2645 3186, India 91805275406, Israel 03 6120092, Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Mexico (D.F.) 5 280 7625, Mexico (Monterrey) 8 357 7695, Netherlands 0348 433466, Norway 32 27 73 00, Singapore 2265886, Spain (Barcelona) 93 582 0251, Spain (Madrid) 91 640 0085, Sweden 08 587 895 00, Switzerland 056 200 51 51, Taiwan 02 2377 1200, United Kingdom 01635 523545

For further support information, see the *Technical Support Resources* appendix. To comment on the documentation, send e-mail to techpubs@natinst.com.

© Copyright 1991, 1999 National Instruments Corporation. All rights reserved.

# **Important Information**

### Warranty

The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected. In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER'S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover damages, defects, malfunctions, or service failures caused by owner's failure to follow the National Instruments installation, operation, or maintenance instructions; owner's modification of the product; owner's abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties, or other events outside reasonable control.

### Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National Instruments Corporation.

#### **Trademarks**

ComponentWorks<sup>TM</sup>, CVI<sup>TM</sup>, DAQCard<sup>TM</sup>, DAQPad<sup>TM</sup>, DAQ-PnP<sup>TM</sup>, DAQ-STC<sup>TM</sup>, LabVIEW<sup>TM</sup>, natinst.com<sup>TM</sup>, National Instruments<sup>TM</sup>, NI-DAQ<sup>TM</sup>, NI-DSP<sup>TM</sup>, NI-PGIA<sup>TM</sup>, PXI<sup>TM</sup>, RTSI<sup>TM</sup>, SCXI<sup>TM</sup>, and VirtualBench<sup>TM</sup> are trademarks of National Instruments Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

#### WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing for a level of reliability suitable for use in or in connection with surgical implants or as critical components in any life support systems whose failure to perform can reasonably be expected to cause significant injury to a human. Applications of National Instruments products involving medical or clinical treatment can create a potential for death or bodily injury caused by product failure, or by errors on the part of the user or application designer. Because each end-user system is customized and differs from National Instruments testing platforms and because a user or application designer may use National Instruments products in combination with other products in a manner not evaluated or contemplated by National Instruments, the user or application designer is ultimately responsible for verifying and validating the suitability of National Instruments products whenever National Instruments products are incorporated in a system or application, including, without limitation, the appropriate design, process and safety level of such system or application.

# **Contents**

| About This Manual                                  |      |
|----------------------------------------------------|------|
| How To Use the NI-DAQ Manual Set                   | xiii |
| Conventions                                        |      |
| MIO and AI Device Terminology                      |      |
| About the National Instruments Documentation Set   |      |
| Related Documentation                              |      |
| Chapter 1                                          |      |
| •                                                  |      |
| Using the NI-DAQ Functions                         |      |
| Status Codes, Device Numbers, and SCXI Chassis IDs |      |
| Variable Data Types                                |      |
| Primary Types                                      |      |
| Arrays                                             | 1-3  |
| Multiple Types                                     |      |
| Programming Language Considerations                | 1-4  |
| Borland Delphi                                     |      |
| Visual Basic for Windows                           |      |
| NI-DAQ Constants Include File                      |      |
| NI-DAQ for LabWindows/CVI                          | 1-5  |
| Function Class Descriptions                        | 1-12 |
| Chapter 2                                          |      |
| Function Reference                                 |      |
|                                                    | 2.1  |
| AI_Change_Parameter                                |      |
| AI_Check                                           |      |
| AI_Clear                                           |      |
| AI_Configure                                       |      |
| AI_Get_Overloaded_Channels                         |      |
| AI_Mux_Config                                      |      |
| AI_Read                                            |      |
| AI_Read_Scan                                       |      |
| AI_Setup                                           |      |
| AI_VRead                                           |      |
| AI_VRead_Scan                                      |      |
| AI_VScale                                          |      |
| Align_DMA_Buffer                                   |      |
| AO_Calibrate                                       |      |
| AO Change Parameter                                | 2-28 |

| AO_Configure                |       |
|-----------------------------|-------|
| AO_Update                   |       |
| AO_VScale                   | 2-40  |
| AO_VWrite                   | 2-42  |
| AO_Write                    | 2-44  |
| Calibrate_1200              | 2-46  |
| Calibrate_DSA               | 2-52  |
| Calibrate_E_Series          | 2-55  |
| Calibrate_TIO               |       |
| Config_Alarm_Deadband       | 2-64  |
| Config_ATrig_Event_Message  |       |
| Config_DAQ_Event_Message    | 2-72  |
| Configure_HW_Analog_Trigger |       |
| CTR_Config                  |       |
| CTR_EvCount                 | 2-93  |
| CTR_EvRead                  | 2-95  |
| CTR_FOUT_Config             | 2-97  |
| CTR_Period                  | 2-99  |
| CTR_Pulse                   | 2-101 |
| CTR_Rate                    | 2-105 |
| CTR_Reset                   | 2-107 |
| CTR_Restart                 | 2-108 |
| CTR_Simul_Op                | 2-109 |
| CTR_Square                  | 2-111 |
| CTR_State                   | 2-114 |
| CTR_Stop                    | 2-115 |
| DAQ_Check                   | 2-116 |
| DAQ_Clear                   | 2-118 |
| DAQ_Config                  | 2-119 |
| DAQ_DB_Config               | 2-122 |
| DAQ_DB_HalfReady            | 2-123 |
| DAQ_DB_Transfer             | 2-125 |
| DAQ_Monitor                 | 2-127 |
| DAQ_Op                      | 2-130 |
| DAQ_Rate                    | 2-133 |
| DAQ_Set_Clock               |       |
| DAQ_Start                   | 2-137 |
| DAQ_StopTrigger_Config      | 2-141 |
| DAQ_to_Disk                 |       |
| DAQ_VScale                  |       |
| DIG_Block_Check             |       |
| DIG_Block_Clear             |       |
| DIG_Block_In                |       |
| DIG Block Out               |       |

| DIG_Block_PG_Config        |     |     |
|----------------------------|-----|-----|
| DIG_Change_Message_Config  | 2-1 | 159 |
| DIG_Change_Message_Control | 2-1 | 162 |
| DIG_DB_Config              | 2-1 | 163 |
| DIG_DB_HalfReady           | 2-1 | 165 |
| DIG_DB_Transfer            |     |     |
| DIG_Filter_Config          | 2-1 | 169 |
| DIG_Grp_Config             | 2-1 | 171 |
| DIG_Grp_Mode               | 2-1 | 173 |
| DIG_Grp_Status             | 2-1 | 176 |
| DIG_In_Grp                 | 2-1 | 178 |
| DIG_In_Line                | 2-1 | 180 |
| DIG_In_Prt                 | 2-1 | 182 |
| DIG_Line_Config            |     |     |
| DIG_Out_Grp                | 2-1 | 186 |
| DIG_Out_Line               | 2-1 | 187 |
| DIG_Out_Prt                |     |     |
| DIG_Prt_Config             | 2-1 | 191 |
| DIG_Prt_Status             |     |     |
| DIG_SCAN_Setup             |     |     |
| DIG_Trigger_Config         |     |     |
| Get_DAQ_Device_Info        |     |     |
| Get_NI_DAQ_Version         |     |     |
| GPCTR_Change_Parameter     |     |     |
| GPCTR_Config_Buffer        |     |     |
| GPCTR Control              |     |     |
| GPCTR_Read_Buffer          |     |     |
| GPCTR_Set_Application      |     |     |
| GPCTR_Watch                |     |     |
| ICTR_Read                  |     |     |
| ICTR_Reset                 |     |     |
| ICTR_Setup                 |     |     |
| Init_DA_Brds               |     |     |
| Lab_ISCAN_Check            |     |     |
| Lab_ISCAN_Op               |     |     |
| Lab_ISCAN_Start            |     |     |
| Lab_ISCAN_to_Disk          |     |     |
| Line_Change_Attribute      |     |     |
| LPM16_Calibrate            |     |     |
| MIO_Config                 |     |     |
| RTSI Clear                 |     |     |
| RTSI_Clock                 |     |     |
| RTSI_Conn                  |     |     |
| RTSL DisConn               |     |     |

| SC_2040_Config          | . 2-311 |
|-------------------------|---------|
| SCAN_Demux              | . 2-313 |
| SCAN_Op                 | . 2-315 |
| SCAN_Sequence_Demux     | . 2-318 |
| SCAN_Sequence_Retrieve  | . 2-321 |
| SCAN_Sequence_Setup     | . 2-322 |
| SCAN_Setup              | . 2-325 |
| SCAN_Start              | . 2-328 |
| SCAN_to_Disk            | . 2-334 |
| SCXI_AO_Write           | . 2-338 |
| SCXI_Cal_Constants      | . 2-341 |
| SCXI_Calibrate          | . 2-350 |
| SCXI_Calibrate_Setup    | . 2-354 |
| SCXI_Change_Chan        | . 2-356 |
| SCXI_Configure_Filter   | . 2-357 |
| SCXI_Get_Chassis_Info   | . 2-360 |
| SCXI_Get_Module_Info    |         |
| SCXI_Get_State          |         |
| SCXI_Get_Status         | . 2-366 |
| SCXI_Load_Config        |         |
| SCXI_ModuleID_Read      |         |
| SCXI_MuxCtr_Setup       | . 2-371 |
| SCXI_Reset              |         |
| SCXI_Scale              | . 2-376 |
| SCXI_SCAN_Setup         |         |
| SCXI_Set_Config         |         |
| SCXI_Set_Gain           |         |
| SCXI_Set_Input_Mode     |         |
| SCXI_Set_State          |         |
| SCXI_Set_Threshold      |         |
| SCXI_Single_Chan_Setup  |         |
| SCXI_Track_Hold_Control | . 2-395 |
| SCXI_Track_Hold_Setup   |         |
| Select_Signal           |         |
| Set_DAQ_Device_Info     |         |
| Timeout_Config          |         |
| WFM_Chan_Control        |         |
| WFM_Check               |         |
| WFM_ClockRate           |         |
| WFM_DB_Config           |         |
| WFM_DB_HalfReady        |         |
| WFM_DB_Transfer         |         |
| WFM from Disk           |         |
| WFM Group Control       |         |

| WFM_Group_Setup | 2-456 |
|-----------------|-------|
| WFM_Load        |       |
| WFM_Op          |       |
| WFM Rate        |       |
| WFM Scale       |       |
| WFM_Set_Clock   |       |

# Appendix A Error Codes

Appendix B
Analog Input Channel, Gain Settings, and Voltage Calculation

Appendix C
NI-DAQ Function Support

Appendix D
Technical Support Resources

# Glossary

### Index

### **Figures**

| Figure 2-1.  | High Alarm Deadband                                   | 2-66 |
|--------------|-------------------------------------------------------|------|
| Figure 2-2.  | Low Alarm Deadband                                    | 2-67 |
| Figure 2-3.  | Analog Trigger Event                                  | 2-71 |
| Figure 2-4.  | ND_BELOW_LOW_LEVEL                                    |      |
| Figure 2-5.  | ND_ABOVE_HIGH_LEVEL                                   | 2-86 |
| Figure 2-6.  | ND_INSIDE_REGION                                      |      |
| Figure 2-7.  | ND_HIGH_HYSTERESIS                                    |      |
| Figure 2-8.  | ND_LOW_HYSTERESIS                                     | 2-87 |
| Figure 2-9.  | Pulse Generation Timing                               |      |
| Figure 2-10. | Pulse Timing for <b>pulseWidth</b> = 0                |      |
| Figure 2-11. | Square Wave Timing                                    |      |
| Figure 2-12. | Digital Scanning Input Group Handshaking Connections  |      |
| Figure 2-13. | Digital Scanning Output Group Handshaking Connections |      |
| Figure 2-14. | Position Measurement for X1 Encoders                  |      |
| Figure 2-15. | Position Measurement for X2 Encoders                  |      |

|      | Figure 2-16. | Position Measurement for X4 Encoders                  | 2-213 |
|------|--------------|-------------------------------------------------------|-------|
|      | Figure 2-17. | Position Measurement Using Two Pulse Encoders         | 2-213 |
|      | Figure 2-18. | X4 Quadrature Decoding with Z indexing                | 2-216 |
|      | Figure 2-19. | Simple Event Counting                                 | 2-233 |
|      | Figure 2-20. | Single Period Measurement                             | 2-234 |
|      | Figure 2-21. | Single Pulse Width Measurement                        |       |
|      | Figure 2-22. | Single Triggered Pulse Width Generation Measurement   |       |
|      | Figure 2-23. | Two Signal Edge Separation Measurement                |       |
|      | Figure 2-24. | X4 Decoding Example with Z indexing                   |       |
|      | Figure 2-25. | Single Pulse Generation                               |       |
|      | Figure 2-26. | Single Triggered Pulse Generation                     |       |
|      | Figure 2-27. | Retriggerable Pulse Generation                        | 2-249 |
|      | Figure 2-28. | Pulse Train Generation                                |       |
|      | Figure 2-29. | Frequency Shift Keying                                | 2-252 |
|      | Figure 2-30. | Buffered Event Counting                               | 2-254 |
|      | Figure 2-31. | Buffered Period Measurement                           | 2-256 |
|      | Figure 2-32. | Buffered Period Measurement when No Source Edges Are  |       |
|      |              | Present between Gate Edges                            | 2-257 |
|      | Figure 2-33. | Buffered Semi-Period Measurement                      | 2-258 |
|      | Figure 2-34. | Buffered Semi-Period Measurement when No Source Edges |       |
|      | _            | Are Present between Gate Edges                        | 2-258 |
|      | Figure 2-35. | Buffered Pulse Width Measurement                      |       |
|      | Figure 2-36. | Buffered Pulse Width when Gate Is High during Arming  | 2-260 |
|      | Figure 2-37. | Buffered Two-Signal Edge Separation Measurement       | 2-261 |
|      | Figure 2-38. | Buffered Position Measurement                         | 2-263 |
|      | Figure 2-39. | Mode 0 Timing Diagram                                 | 2-271 |
|      | Figure 2-40. | Mode 1 Timing Diagram                                 | 2-271 |
|      | Figure 2-41. | Mode 2 Timing Diagram                                 | 2-271 |
|      | Figure 2-42. | Mode 3 Timing Diagram                                 | 2-272 |
|      | Figure 2-43. | Mode 4 Timing Diagram                                 | 2-272 |
|      | Figure 2-44. | Mode 5 Timing Diagram                                 | 2-272 |
|      |              |                                                       |       |
| ablo | es           |                                                       |       |
|      | Table 1.     | MIO and AI Devices                                    | xvii  |
|      | Table 1-1.   | Status Values                                         | 1-1   |
|      | Table 1-2.   | Primary Type Names                                    |       |
|      | Table 1-3.   | The LabWindows/CVI Function Tree for Data Acquisition |       |
|      | Table 2-1.   | Parameter Settings for AI_Configure                   |       |
|      | Table 2-2.   | Port 0 Digital I/O Lines Reserved                     |       |
|      | Table 2-3.   | Reglitching Parameters for Permissible Devices        |       |
|      | Table 2-4.   | Voltage or Current Output Parameters                  |       |
|      | Table 2-5.   | Parameter Values for FIFO Transfer Conditions         |       |
|      |              |                                                       |       |

| Table 2-6.  | Default Values for FIFO Transfer Condition                         | 2-31  |
|-------------|--------------------------------------------------------------------|-------|
| Table 2-7.  | Parameter Setting Information for Output Enable                    | 2-32  |
| Table 2-8.  | Parameter Setting Information for Output Attenuation               | 2-33  |
| Table 2-9.  | Possible Calibrate_1200 Parameter Values                           | 2-48  |
| Table 2-10. | DAQEvent Messages                                                  | 2-75  |
| Table 2-11. | Valid Counters and External Timing Signals for <b>DAQEvent</b> = 9 | 2-79  |
| Table 2-12. | Usable Parameters for Different <b>DAQEvent</b> Codes              | 2-80  |
| Table 2-13. | Legal Values for gpctrNum Parameter                                | 2-208 |
| Table 2-14. | Legal Values for paramValue when paramID = ND_SOURCE               |       |
|             | and gpctrNum =ND_Counter_X.                                        | 2-209 |
| Table 2-15. | Definition of Other Counter for paramValue Set to                  |       |
|             | ND_OTHER_GPCTR_TC                                                  | 2-210 |
| Table 2-16. | Default Source Selection for ND_SIMPLE_EVENT_CNT or                |       |
|             | ND_BUFFERED_EVENT_CNT                                              | 2-210 |
| Table 2-17. | Legal Values for paramValue when paramID = ND_GATE and             |       |
|             | gpctrNum =ND_COUNTER_X.                                            |       |
| Table 2-18. | Default Gate Selection                                             |       |
| Table 2-19. | Default Aux Line Selection                                         | 2-218 |
| Table 2-20. | Legal Values for <b>paramValue</b> when                            |       |
|             | <pre>paramID = ND_INITIAL_COUNT.</pre>                             | 2-218 |
| Table 2-21. | Legal Values for $paramValue$ when $paramID = ND\_COUNT_1$ ,       |       |
|             | ND_COUNT_2, ND_COUNT_3, and ND_COUNT_4                             |       |
| Table 2-22. | Default Up/Down Selection                                          |       |
| Table 2-23. | Legal Values for the action Parameter                              | 2-225 |
| Table 2-24. | Descriptions for application                                       |       |
| Table 2-25. | Terminal Count                                                     |       |
| Table 2-26. | AT-AO-6/10, DAQPad-6713, and DIO-32F RTSI Bus Signals              |       |
| Table 2-27. | DIO 6533 RTSI Bus Signals                                          |       |
| Table 2-28. | SCXI Module Scan List                                              |       |
| Table 2-29. | MIO or AI Scan List                                                |       |
| Table 2-30. | Possible Values for signal                                         |       |
| Table 2-31. | Legal Parameters for the 660X Devices                              |       |
| Table 2-32. | E Series and 671X Signal Name Equivalencies                        |       |
| Table 2-33. | RTSI Bus Line and VXIbus Trigger Mapping                           |       |
| Table 2-34. | RTSI Bus Line and PXI Bus Trigger Mapping                          | 2-421 |
| Table A-1.  | Error Code Summary                                                 | A-1   |
| Table B-1.  | Valid Analog Input Channel Settings                                |       |
| Table B-2.  | Valid Internal Analog Input Channels                               |       |
| Table B-3.  | Internal Channel Purposes for Analog Input Devices                 |       |
| Table B-4.  | Valid Gain Settings                                                | B-7   |
| Table B-5.  | The Values of maxReading and maxVolt                               | B-8   |

| Table C-1. | MIO and AI Device Functions       |      |
|------------|-----------------------------------|------|
|            | Lab/516/DAQCard-500/700 Functions |      |
| Table C-3. | DSA Device Functions              | C-8  |
| Table C-4. | Analog Output Family Functions    | C-10 |
| Table C-5. | Digital I/O Family Functions      |      |
|            | Timing Device Functions           |      |
| Table C-7. | SCXI Functions                    | C-15 |

# **About This Manual**

The NI-DAQ Function Reference Manual for PC Compatibles is for users of the NI-DAQ software for PC compatibles version 6.6. NI-DAQ software is a powerful application programming interface (API) between your data acquisition (DAQ) application and the National Instruments DAQ devices.

# **How To Use the NI-DAQ Manual Set**

You should begin by reading the *NI-DAQ User Manual for PC Compatibles*. Chapter 1, *Introduction to NI-DAQ*, contains a flowchart that illustrates the sequence of steps you should take to learn about and get started with NI-DAQ software.

When you are familiar with the material in the NI-DAQ User Manual for PC Compatibles, you can use the NI-DAQ Function Reference Manual for PC Compatibles, which contains detailed descriptions of the NI-DAQ functions. You also can use the Windows help file NIDAQPC.HLP, which contains all of the function reference material. Other documentation includes the DAQ Hardware Overview Guide, and the Measurement & Automation Explorer help file.

# **Conventions**

|  | conventions |  |  |
|--|-------------|--|--|
|  |             |  |  |
|  |             |  |  |

An asterisk following a signal name indicates an active low signal.

This icon denotes a note, which alerts you to important information.

This icon denotes a caution, which advises you of precautions to take to

avoid injury, data loss, or a system crash.

1102/B/C modules Refers to the SCXI-1102, SCXI-1102B, and SCXI-1102C modules and the

VXI-SC-1102, VXI-SC-1102B, and VXI-SC-1102C submodules.

1200/1200 AI device Refers to DAQCard-1200, DAQPad-1200, Lab-PC-1200, Lab-PC-1200AI,

PCI-1200, and SCXI-1200.

Refers to a high-speed external bus that implements the IEEE 1394 serial

bus protocol.

12-bit device These MIO and AI devices are listed in Table 1.

16-bit device These MIO and AI devices are listed in Table 1.

445*X* device Refers to the PCI-4451, PCI-4452, PCI-4453, and PCI-4454.

455X device Refers to the NI 4551 and NI 4552.

516 device Refers to the DAQCard-516 and PC-516.

54XX device Refers to the AT-5411 and PCI-5411.

611X device Refers to the PCI-6110E and PCI-6111E.

6025E device Refers to the PCI-6025E and PXI-6025E.

6052E device Refers to the PCI-6052E, PXI-6052E, and DAQPad-6052E for 1394.

652X device Refers to the PCI-6527 and PXI-6527.

660X device Refers to the PCI-6601, PCI-6602, PXI-6602, PCI-6608, and PXI-6608.

Refers to the PCI-6602 and PXI-6602.

6703 device Refers to the PCI-6703 and PXI-6703.

6704 device Refers to the PCI-6704 and PXI-6704.

671X device Refers to the PCI-6711, PXI-6711, PCI-6713, and PXI-6713.

AI device These analog input devices are listed in Table 1.

**bold** Bold text denotes items that you must select or click on in the software,

such as menu items and dialog box options. Bold text also denotes

parameter names.

DAQCard-500/700 Refers to the DAQCard-500 and DAQCard-700.

DIO 6533 Refers to the AT-DIO-32HS, PCI-DIO-32HS, DAQCard-6533, and

PXI-6533.

DIO-24 (6503) Refers to the PC-DIO-24, PC-DIO-24PnP, DAQCard-DIO-24, and

PCI-6503.

DIO-32F Refers to the AT-DIO-32F.

DIO-96 Refers to the PC-DIO-96PnP, PCI-DIO-96, DAQPad-6507, DAQPad-6508,

and PXI-6508.

DIO device Refers to any DIO-24, DIO-32, DIO-6533 (DIO-32HS), DIO-96,

VXI-DIO-128, or DAQPad DIO.

DSA device Refers to the PCI-4451, PCI-4452, PCI-4453, PCI-4454, NI 4551, and

NI 4552.

E Series device These are MIO and AI devices. Refer to Table 1 for a complete list of these

devices.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction

to a key concept. This font also denotes text that is a placeholder for a word

or value that you must supply.

Lab and 1200 analog

output device

Refers to the DAQCard-1200, DAQPad-1200, Lab-PC+, Lab-PC-1200,

PCI-1200, and SCXI-1200.

Lab and 1200 device Refers to the DAQCard-1200, DAQPad-1200, Lobed+, Lab-PC-1200,

Lab-PC-1200AI, PCI-1200, and SCXI-1200.

LPM device Refers to the PC-LPM-16 and PC-LPM-16PnP.

MIO device Refers to multifunction I/O devices. See Table 1 for a list of these devices.

MIO-16XE-50 device Refers to the AT-MIO-16XE-50, DAQPad-MIO-16XE-50, and

NEC-MIO-16XE-50, and PCI-MIO-16XE-50.

MIO-64 Refers to MIO devices with 64 AI channels, such as the AT-MIO-64E-3,

PCI-6031E, PCI-6033E, PCI-6071E, VXI-MIO-64E-1, and

VXI-MIO-64XE-10.

monospace Text in this font denotes text or characters that you should enter from the

keyboard, sections of code, programming examples, and syntax examples. This font is also used for the proper names of disk drives, paths, directories, programs, subprograms, subroutines, device names, functions, operations,

variables, filenames and extensions, and code excerpts.

monospace italic Italic text in this font denotes text that is a placeholder for a word or value

that you must supply.

NI-DAQ Refers to the NI-DAQ software for PC compatibles, unless otherwise noted.

NI-TIO based device Refers to the NI 4551, NI 4552, PCI-6601, PCI-6602, PXI-6602, PCI-6608,

and PXI-6608.

PC Refers to the IBM PC/XT, IBM PC AT, and compatible computers.

**PCI Series** Refers to the National Instruments products that use the high-performance

expansion bus architecture originally developed by Intel.

**PXI** Refers to PCI extensions for instrumentation that are derived from the

CompactPCI standard.

remote SCXI Refers to an SCXI configuration where either an SCXI-2000 chassis or an

SCXI-2400 remote communications module is connected to the PC serial

port.

SCXI-1102/B/C Refers to the SCXI-1102, SCXI-1102B, and SCXI-1102C devices.

SCXI-1120/D Refers to the SCXI-1120 and SCXI-1120D.

SCXI analog input

module

Refers to the SCXI-1100, SCXI-1101, SCXI-1102, SCXI-1104, SCXI-1112, SCXI-1120, SCXI-1120D, SCXI-1121, SCXI-1122, SCXI-1125, SCXI-1140, SCXI-1141, SCXI-1142, and SCXI-1143.

SCXI chassis Refers to the SCXI-1000, SCXI-1000DC, SCXI-1001, and SCXI-2000.

SCXI digital module Refers to the SCXI-1160, SCXI-1161, SCXI-1162, SCXI-1162HV,

SCXI-1163, and SCXI-1163R.

simultaneous sampling

device

Refers to the PCI-6110E, PCI-6111E, PCI-4451, PCI-4452, PCI-4551,

PCI-4552, PCI-4453, and PCI-4454.

VXI-MIO device Refers to the VXI-MIO-64E-1 and VXI-MIO-64XE-10.

VXI-SC-1102/B/C Refers to the VXI-SC-1102, VXI-SC-1102B, and VXI-SC-1102C.

### MIO and Al Device Terminology

This manual uses generic terms to describe groups of devices whenever possible. The generic terms for the MIO and AI devices are based on the number of bits, the platform, and the functionality. These devices are collectively known as the E Series devices. Table 1 lists each MIO and

AI device and the possible board type for each.

Table 1. MIO and AI Devices

|                    |            | Number<br>of SE |        |               |
|--------------------|------------|-----------------|--------|---------------|
| Device             | Board Type | Channels        | Bit    | Туре          |
| AT-AI-16XE-10      | AI         | 16              | 16-bit | AT            |
| AT-MIO-16DE-10     | MIO        | 16              | 12-bit | AT            |
| AT-MIO-16E-1       | MIO        | 16              | 12-bit | АТ            |
| AT-MIO-16E-2       | MIO        | 16              | 12-bit | АТ            |
| AT-MIO-16E-10      | MIO        | 16              | 12-bit | АТ            |
| AT-MIO-16F-5       | MIO        | 16              | 12-bit | AT            |
| AT-MIO-16XE-10     | MIO        | 16              | 16-bit | АТ            |
| AT-MIO-16XE-50     | MIO        | 16              | 16-bit | AT            |
| AT-MIO-64E-3       | MIO        | 64              | 12-bit | AT            |
| AT-MIO-64F-5       | MIO        | 64              | 12-bit | АТ            |
| DAQCard-6023E      | AI         | 16              | 12-bit | PCMCIA        |
| DAQCard-6024E      | MIO        | 16              | 12-bit | PCMCIA        |
| DAQCard-6062E      | MIO        | 16              | 12-bit | PCMCIA        |
| DAQCard-AI-16E-4   | AI         | 16              | 12-bit | PCMCIA        |
| DAQCard-AI-16XE-50 | AI         | 16              | 16-bit | PCMCIA        |
| DAQPad-MIO-16XE-50 | MIO        | 16              | 16-bit | Parallel Port |
| DAQPad-6020E       | MIO        | 16              | 12-bit | USB           |
| DAQPad-6052E       | MIO        | 16              | 16-bit | 1394          |
| DAQPad-6070E       | MIO        | 16              | 12-bit | 1394          |
| NEC-AI-16E-4       | AI         | 16              | 12-bit | NEC           |
| NEC-AI-16XE-50     | AI         | 16              | 16-bit | NEC           |
| NEC-MIO-16E-4      | MIO        | 16              | 12-bit | NEC           |
| NEC-MIO-16XE-50    | MIO        | 16              | 16-bit | NEC           |
| PCI-6023E          | AI         | 16              | 12-bit | PCI           |

Table 1. MIO and AI Devices (Continued)

|                         |            | Number<br>of SE |                        |      |
|-------------------------|------------|-----------------|------------------------|------|
| Device                  | Board Type | Channels        | Bit                    | Туре |
| PCI-6024E               | MIO        | 16              | 12-bit                 | PCI  |
| PCI-6025E               | MIO        | 16              | 12-bit                 | PCI  |
| PCI-6031E (MIO-64XE-10) | MIO        | 64              | 16-bit                 | PCI  |
| PCI-6032E (AI-16XE-10)  | AI         | 16              | 16-bit                 | PCI  |
| PCI-6033E (AI-64XE-10)  | AI         | 64              | 16-bit                 | PCI  |
| PCI-6034E               | AI         | 16              | 16-bit                 | PCI  |
| PCI-6035E               | MIO        | 16              | 16-bit AI<br>12-bit AO | PCI  |
| PCI-6052E               | MIO        | 16              | 16-bit                 | PCI  |
| PCI-6071E (MIO-64E-1)   | MIO        | 64              | 12-bit                 | PCI  |
| PCI-6110E               | MIO        | 4 diff. only    | 12-bit AI<br>16-bit AO | PCI  |
| PCI-6111E               | MIO        | 2 diff. only    | 12-bit AI<br>16-bit AO | PCI  |
| PCI-MIO-16E-1           | MIO        | 16              | 12-bit                 | PCI  |
| PCI-MIO-16E-4           | MIO        | 16              | 12-bit                 | PCI  |
| PCI-MIO-16XE-10         | MIO        | 16              | 16-bit                 | PCI  |
| PCI-MIO-16XE-50         | MIO        | 16              | 16-bit                 | PCI  |
| PXI-6011E               | MIO        | 16              | 16-bit                 | PXI  |
| PXI-6023E               | AI         | 16              | 12-bit                 | PXI  |
| PXI-6024E               | MIO        | 16              | 12-bit                 | PXI  |
| PXI-6025E               | MIO        | 16              | 12-bit                 | PXI  |
| PXI-6030E               | MIO        | 16              | 16-bit                 | PXI  |
| PXI-6031E               | MIO        | 64              | 16-bit                 | PXI  |
| PXI-6034E               | AI         | 16              | 16-bit                 | PXI  |

| Board Type | Number<br>of SE<br>Channels | Bit                                               | Туре                                                                            |
|------------|-----------------------------|---------------------------------------------------|---------------------------------------------------------------------------------|
| MIO        | 16                          | 16-bit AI<br>12-bit AO                            | PXI                                                                             |
| MIO        | 16                          | 12-bit                                            | PXI                                                                             |
| MIO        | 16                          | 16-bit                                            | PXI                                                                             |
| MIO        | 16                          | 12-bit                                            | PXI                                                                             |
|            | MIO<br>MIO<br>MIO           | Board Type Of SE Channels  MIO 16  MIO 16  MIO 16 | Board Typeof SE<br>ChannelsBitMIO1616-bit AI<br>12-bit AOMIO1612-bitMIO1616-bit |

64

64

**Table 1.** MIO and Al Devices (Continued)

## **About the National Instruments Documentation Set**

MIO

MIO

The NI-DAQ Function Reference Manual for PC Compatibles is one piece of the documentation set for your DAQ system. You might have any of several types of manuals, depending on the hardware and software in your system. Use these manuals as follows:

12-bit

16-bit

VXI VXI

- Getting Started with SCXI—If you are using SCXI, this is the first
  manual you should read. It gives an overview of the SCXI system and
  contains the most commonly needed information for the modules,
  chassis, and software.
- Your SCXI hardware user manuals—These manuals contain detailed information about signal connections and module configuration. They also explain in greater detail how the module works and contain application hints.
- Your DAQ hardware user manuals—These manuals have detailed information about the DAQ hardware that plugs into or is connected to your computer. Use these manuals for hardware installation and configuration instructions, specification information about your DAQ hardware, and application hints.
- Software documentation—Examples of software documentation you
  might have are the ComponentWorks, LabVIEW and
  LabWindows/CVI, VirtualBench, and NI-DAQ documentation. After
  you have set up your hardware system, use either the application
  software or the NI-DAQ documents to help you write your application.
  If you have a large and complicated system, it is worthwhile to look
  through the software manuals before you configure your hardware.

VXI-MIO-64E-1

VXI-MIO-64XE-10

- Accessory installation guides or manuals—If you are using accessory
  products, read the terminal block and cable assembly installation
  guides or accessory board user manuals. They explain how to
  physically connect the relevant pieces of the system. Consult these
  guides when you are making your connections.
- *SCXI Chassis User Manual*—If you are using SCXI, read this manual for maintenance information on the chassis and installation instructions.

## **Related Documentation**

The following documents contain information you may find useful as you read this manual.

For detailed hardware information, refer to the user manual included with each board. You can also review the following manuals:

- Omega Temperature Handbook
- NIST Monograph 125, Thermocouple Reference Tables

# **Using the NI-DAQ Functions**

This chapter contains important information about how to apply the function descriptions in this manual to your programming language and environment.

When you are familiar with the material in the *NI-DAQ User Manual for PC Compatibles*, you can use this manual for detailed information about each NI-DAQ function.

# Status Codes, Device Numbers, and SCXI Chassis IDs

Every NI-DAQ function is of the following form:

status = Function\_Name (parameter 1, parameter 2, ...
parameter n)

where  $n \ge 0$ . Each function returns a value in the **status** variable that indicates the success or failure of the function, as shown in Table 1-1.

Table 1-1. Status Values

| Status   | Result                                                       |
|----------|--------------------------------------------------------------|
| Negative | Function did not execute because of an error                 |
| Zero     | Function completed successfully                              |
| Positive | Function executed but with a potentially serious side effect |



**Note** In all applications, **status** is always a 16-bit integer. Appendix A, *Error Codes*, contains a list of error codes.

Parameter tables follow the NI-DAQ function format and purpose. The first parameter to almost every NI-DAQ function is the device number of the DAQ device you want NI-DAQ to use for the given operation. After you follow the installation and configuration instructions in the NI-DAQ release notes and Chapter 1, *Introduction to NI-DAQ*, of the *NI-DAQ User Manual for PC Compatibles*, you can use Measurement & Automation Explorer, to

determine the device number for each device you have installed in the system, or to verify your device numbers. You can use multiple DAQ devices in one application; to do so, pass the appropriate device number to each function.

If you are using SCXI, you must pass the chassis ID that you assigned to your SCXI chassis in the configuration utility to the SCXI functions you use. For many of the SCXI functions, you must also pass the module slot number of the module you want to use. The slots in the SCXI chassis are numbered from left to right, beginning with slot 1. The controller on the left side of the chassis is referred to as Slot 0. You can use the configuration utility to verify your chassis IDs and your module slot numbers.

# Variable Data Types

The NI-DAQ API is identical in Windows 98/95 and Windows NT. Every function description has a parameter table that lists the data types in each of the environments. LabWindows/CVI uses the same types as Windows. The following sections describe the notation used in those parameter tables and throughout the manual for variable data types.

### **Primary Types**

Table 1-2 shows the primary type names and their ranges.

|              |                          |                   | Туре  |                                                                                                                                        |                            |
|--------------|--------------------------|-------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Type<br>Name | Description              | Range             | C/C++ | Visual BASIC                                                                                                                           | Pascal<br>(Borland Delphi) |
| i8           | 8-bit ASCII<br>character | -128 to 127       | char  | Not supported by<br>BASIC. For functions<br>that require character<br>arrays, use string types<br>instead. See the STR<br>description. | Byte                       |
| i16          | 16-bit signed integer    | -32,768 to 32,767 | short | Integer<br>(for example:<br>deviceNum%)                                                                                                | SmallInt                   |

Table 1-2. Primary Type Names

Chapter 1

 Table 1-2.
 Primary Type Names (Continued)

|              |                                              |                                                                                                                         | Туре                                                    |                                                                                                                                                                 |                                                                       |
|--------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Type<br>Name | Description                                  | Range                                                                                                                   | C/C++                                                   | Visual BASIC                                                                                                                                                    | Pascal<br>(Borland Delphi)                                            |
| u16          | 16-bit unsigned integer                      | 0 to 65,535                                                                                                             | unsigned<br>short                                       | Not supported by<br>BASIC. For functions<br>that require unsigned<br>integers, use the signed<br>integer type instead. See<br>the i16 description.              | Word                                                                  |
| i32          | 32-bit signed integer                        | -2,147,483,648 to 2,147,483,647                                                                                         | long                                                    | Long (for example: count&)                                                                                                                                      | LongInt                                                               |
| u32          | 32-bit unsigned integer                      | 0 to 4,294,967,295                                                                                                      | unsigned<br>long                                        | Not supported by<br>BASIC. For functions<br>that require unsigned<br>long integers, use the<br>signed long integer type<br>instead. See the i32<br>description. | Cardinal (in 32-bit operating systems). Refer to the i32 description. |
| f32          | 32-bit<br>single-precision<br>floating point | $-3.402823 \times 10^{38}$ to $3.402823 \times 10^{38}$                                                                 | float                                                   | Single (for example: num!)                                                                                                                                      | Single                                                                |
| f64          | 64-bit<br>double-precision<br>floating point | $\begin{array}{c} -1.797683134862315 \\ \times 10^{308} \text{ to} \\ 1.797683134862315 \\ \times 10^{308} \end{array}$ | double                                                  | Double (for example: voltage#)                                                                                                                                  | Double                                                                |
| STR          | BASIC or Pascal<br>character string          | _                                                                                                                       | Use character array terminated by the null character \0 | String (for example: filename\$)                                                                                                                                | String                                                                |

### **Arrays**

When a primary type is inside square brackets (for example, [i16]) an array of the type named is required for that parameter.

# **Multiple Types**

Some parameters can be in multiple types. Combinations of the primary types separated by commas denote parameters with this ability, as in the following example:

[i16], [f32]

The previous example describes a parameter that can accept an array of signed integers or an array of floating-point numbers.

# **Programming Language Considerations**

Apart from the data type differences, there are a few language-dependent considerations you need to be aware of when you use the NI-DAQ API. Read the following sections that apply to your programming language.



**Note** Be sure to include the NI-DAQ function prototype files by including the appropriate NI-DAQ header file in your source code.



**Note** Refer to Chapter 2, Fundamentals of Building Windows Applications, in the NI-DAQ User Manual for PC Compatibles for further programming details.

### **Borland Delphi**

When you pass arrays to NI-DAQ functions using Borland Delphi in Windows, you need to pass a pointer to the array. You can either declare an array and pass the array *address* to the NI-DAQ function, or you can declare a pointer, dynamically allocate memory for the pointer, and pass the pointer directly to the NI-DAQ function. For example:

```
buffer : array [1..1000] of Integer;
bufPtr : ^Integer;
status := DAQ_Start (device, chan, gain, @buffer, count, timebase, sampInterval);
or
(* allocate memory for bufPtr first using AllocMem or New *)
status := DAQ_Start (device, chan, gain, bufPtr, count, timebase, sampInterval);
```

### **Visual Basic for Windows**

When you pass arrays to NI-DAQ functions using Visual Basic for Windows, you need to pass the first element of the array by reference. For example, you would call the DAQ\_Start function using the following syntax:

```
status% = DAQ_Start (device%, chan%, gain%, buffer%(0),
count&, timebase%, sampInterval%)
```

### NI-DAO Constants Include File

The file NIDAQCNS.INC contains definitions for constants required for some of the NI-DAQ functions. You should use the constants symbols in your programs; do not use the numerical values.

In Visual Basic for Windows, you can add the entire NIDAQCNS. INC file into your project. You then will be able to use any of the constants defined in this file in any module in your program.

To add the NIDAQCNS. INC file for your project in Visual Basic 3.0 and 4.0, go to the **File** menu and select the **Add File** option. Select NIDAQCNS.INC, which is the Include subdirectory of NI-DAQ directory. Then, select **Open** to add the file to the project.

To add the NIDAQCNS. INC file to your project in Visual Basic 5.0, go to the **Project** menu and select **Add Module**. Click on the **Existing** tab page. Select NIDAQCNS. INC, which is the Include subdirectory of your NI-DAQ directory. Then, select **Open** to add the file to the project.

Alternatively, you can cut and paste individual lines from this file and place them in the module where you need them. However, if you do so, you should remove the word *Global* from the *CONSTANTS* definition.

#### For example,

GLOBAL CONST ND\_DATA\_XFER\_MODE\_AI& = 14000

#### would become:

CONST ND\_DATA\_XFER\_MODE\_AI& = 14000

# NI-DAQ for LabWindows/CVI

Inside the LabWindows/CVI environment, the NI-DAQ functions appear in the Data Acquisition function panels under the **Libraries** menu. Each function panel represents an NI-DAQ function, which is displayed at the bottom of the panel. The function panels have help text for each function and each parameter; however, if you need additional information, you can look up the appropriate NI-DAQ function alphabetically in Chapter 2, *Function Reference*, of this manual.

Table 1-3 shows how the LabWindows/CVI function panel tree is organized, and the NI-DAQ function name that corresponds to each function panel.

Table 1-3. The LabWindows/CVI Function Tree for Data Acquisition

| LabWindows/CVI Function Panel | NI-DAQ Function             |
|-------------------------------|-----------------------------|
| Data Acquisition              |                             |
| Initialization/Utilities      |                             |
| Initialize Board              | Init_DA_Brds                |
| Configure Timeout             | Timeout_Config              |
| Get Device Information        | Get_DAQ_Device_Info         |
| Set Device Information        | Set_DAQ_Device_Info         |
| Align DMA Buffer              | Align_DMA_Buffer            |
| Get DAQ Library Version       | Get_NI_DAQ_Version          |
| Select Signals                | Select_Signal               |
| Config Analog Trigger         | Configure_HW_Analog_Trigger |
| Change Line Attribute         | Line_Change_Attribute       |
| Board Config & Calibrate      |                             |
| Configure MIO Boards          | MIO_Config                  |
| Configure AMUX Boards         | AI_Mux_Config               |
| Configure SC-2040             | SC_2040_Config              |
| Calibrate E-Series            | Calibrate_E_Series          |
| Calibrate LPM-16              | LPM16_Calibrate             |
| Calibrate Analog Output       | AO_Calibrate                |
| Calibrate 1200 Devices        | Calibrate_1200              |
| Calibrate DSA Devices         | Calibrate_DSA               |
| Calibrate TIO Devices         | Calibrate_TIO               |
| Analog Input                  |                             |
| Single Point                  |                             |
| Measure Voltage               | AI_VRead                    |
| Clear Analog Input            | AI_Clear                    |
| Read Analog Binary            | AI_Read                     |
| Scale Binary to Voltage       | AI_VScale                   |

 Table 1-3.
 The LabWindows/CVI Function Tree for Data Acquisition (Continued)

| LabWindows/CVI Function Panel | NI-DAQ Function        |
|-------------------------------|------------------------|
| Setup Analog Input            | AI_Setup               |
| Check Analog Input            | AI_Check               |
| Configure Analog Input        | AI_Configure           |
| Change Analog Input Parameter | AI_Change_Parameter    |
| Multiple Point                |                        |
| Acquire Single Channel        | DAQ_Op                 |
| Scan Multiple Channels        | SCAN_Op                |
| Scan Lab Channels             | Lab_ISCAN_Op           |
| Single Scan Binary            | AI_Read_Scan           |
| Single Scan Voltage           | AI_VRead_Scan          |
| Single Channel to Disk        | DAQ_to_Disk            |
| Multiple Chans to Disk        | SCAN_to_Disk           |
| Scan Lab Chans to Disk        | Lab_ISCAN_to_Disk      |
| <b>Low-Level Functions</b>    |                        |
| Convert DAQ Rate              | DAQ_Rate               |
| Start DAQ                     | DAQ_Start              |
| Setup Scan                    | SCAN_Setup             |
| Setup Sequence of Scans       | SCAN_Sequence_Setup    |
| Retrieve Scan Sequence        | SCAN_Sequence_Retrieve |
| Start Scan                    | SCAN_Start             |
| Check DAQ or Scan             | DAQ_Check              |
| Assign Rate to DAQ Group      | DAQ_Set_Clock          |
| Monitor DAQ or Scan           | DAQ_Monitor            |
| Start Lab Scan                | Lab_ISCAN_Start        |
| Check Lab Scan                | Lab_ISCAN_Check        |
| Clear DAQ or Scan             | DAQ_Clear              |
| Scale DAQ or Scan             | DAQ_VScale             |

 Table 1-3. The LabWindows/CVI Function Tree for Data Acquisition (Continued)

| LabWindows/CVI Function Panel  | NI-DAQ Function            |
|--------------------------------|----------------------------|
| Reorder Scan Data              | SCAN_Demux                 |
| Reorder Scan Seq Data          | SCAN_Sequence_Demux        |
| Configure DAQ                  | DAQ_Config                 |
| Config DAQ Pretrigger          | DAQ_StopTrigger_Config     |
| Enable Double Buffering        | DAQ_DB_Config              |
| Is Half Buffer Ready?          | DAQ_DB_HalfReady           |
| Half Buffer to Array           | DAQ_DB_Transfer            |
| Set DAQ Clock Rate             | DAQ_Set_Clock              |
| Get Overloaded Channels        | AI_Get_Overloaded_Channels |
| Analog Output                  |                            |
| Single Point                   |                            |
| Generate Voltage               | AO_VWrite                  |
| Scale Voltage to Binary        | AO_VScale                  |
| Write Analog Binary            | AO_Write                   |
| Update Analog DACs             | AO_Update                  |
| Configure Analog Output        | AO_Configure               |
| Change Analog Output Parameter | AO_Change_Parameter        |
| Waveform Generation            |                            |
| Generate WFM from Array        | WFM_Op                     |
| Generate WFM from Disk         | WFM_from_Disk              |
| Low-Level Functions            |                            |
| Scale Waveform Buffer          | WFM_Scale                  |
| Convert Waveform Rate          | WFM_Rate                   |
| Assign Waveform Group          | WFM_Group_Setup            |
| Load Waveform Buffer           | WFM_Load                   |
| Assign Rate to WFM Group       | WFM_ClockRate              |
| Control Waveform Group         | WFM_Group_Control          |

 Table 1-3.
 The LabWindows/CVI Function Tree for Data Acquisition (Continued)

| LabWindows/CVI Function Panel | NI-DAQ Function     |
|-------------------------------|---------------------|
| Pause/Resume WFM Channel      | WFM_Chan_Control    |
| Check Waveform Channel        | WFM_Check           |
| Enable Double Buffering       | WFM_DB_Config       |
| Is Half Buffer Ready?         | WFM_DB_HalfReady    |
| Copy Array to WFM Buffer      | WFM_DB_Transfer     |
| Set WFM Group Rate            | WFM_Set_Clock       |
| Digital Input/Output          |                     |
| Configure Port                | DIG_Prt_Config      |
| Configure Line                | DIG_Line_Config     |
| Read Port (32-bit)            | DIG_In_Prt          |
| Read Line                     | DIG_In_Line         |
| Write Port (32-bit)           | DIG_Out_Prt         |
| Write Line                    | DIG_Out_Line        |
| Get Port Status               | DIG_Prt_Status      |
| Group Mode                    |                     |
| Configure Group               | DIG_Grp_Config      |
| Read Group                    | DIG_In_Grp          |
| Write Group                   | DIG_Out_Grp         |
| Get Group Status              | DIG_Grp_Status      |
| Set Group Mode                | DIG_Grp_Mode        |
| Block Transfer                |                     |
| Read Block                    | DIG_Block_In        |
| Write Block                   | DIG_Block_Out       |
| Check Block                   | DIG_Block_Check     |
| Clear Block                   | DIG_Block_Clear     |
| Set Up Pattern Generation     | DIG_Block_PG_Config |
| Configure Digital Trigger     | DIG_Trigger_Config  |

 Table 1-3. The LabWindows/CVI Function Tree for Data Acquisition (Continued)

| LabWindows/CVI Function Panel | NI-DAQ Function            |
|-------------------------------|----------------------------|
| Set Up Digital Scanning       | DIG_SCAN_Setup             |
| Enable Double Buffering       | DIG_DB_Config              |
| Is Half Buffer Ready?         | DIG_DB_HalfReady           |
| Transfer To/From Array        | DIG_DB_Transfer            |
| Change Notification           |                            |
| Configure Change Notification | DIG_Change_Message_Config  |
| Control Change Notification   | DIG_Change_Message_Control |
| Filtering                     |                            |
| Configure Digital Filtering   | DIG_Filter_Config          |
| SCXI                          |                            |
| Load SCXI Configuration       | SCXI_Load_Config           |
| Change Configuration          | SCXI_Set_Config            |
| Get Chassis Config Info       | SCXI_Get_Chassis_Info      |
| Get Module Config Info        | SCXI_Get_Module_Info       |
| Read Module ID Register       | SCXI_ModuleID_Read         |
| Reset SCXI                    | SCXI_Reset                 |
| Set Up Single AI Channel      | SCXI_Single_Chan_Setup     |
| Set Up Muxed Scanning         | SCXI_SCAN_Setup            |
| Set Up Mux Counter            | SCXI_MuxCtr_Setup          |
| Set Up Track/Hold             | SCXI_Track_Hold_Setup      |
| Control Track/Hold State      | SCXI_Track_Hold_Control    |
| Select Gain                   | SCXI_Set_Gain              |
| Configure Filter              | SCXI_Configure_Filter      |
| Select Scanning Mode          | SCXI_Set_Input_Mode        |
| Change AI Channel             | SCXI_Change_Chan           |
| Scale SCXI Data               | SCXI_Scale                 |
| Write to AO Channel           | SCXI_AO_Write              |

Chapter 1

 Table 1-3.
 The LabWindows/CVI Function Tree for Data Acquisition (Continued)

| LabWindows/CVI Function Panel | NI-DAQ Function        |  |
|-------------------------------|------------------------|--|
| Set Digital or Relay State    | SCXI_Set_State         |  |
| Get Digital or Relay State    | SCXI_Get_State         |  |
| Get Status Register           | SCXI_Get_Status        |  |
| Set Up Calibration Mode       | SCXI_Calibrate_Setup   |  |
| Calibrate SCXI Module         | SCXI_Calibrate         |  |
| Change Cal Constants          | SCXI_Cal_Constants     |  |
| Set Threshold Values          | SCXI_Set_Threshold     |  |
| Counter/Timer                 |                        |  |
| DAQ-STC and NI-TIO Counters   |                        |  |
| Select Ctr Application        | GPCTR_Set_Application  |  |
| Change Ctr Parameter          | GPCTR_Change_Parameter |  |
| Configure Ctr Buffer          | GPCTR_Config_Buffer    |  |
| Control Ctr Operation         | GPCTR_Control          |  |
| Monitor Ctr Properties        | GPCTR_Watch            |  |
| Read Ctr Buffer               | GPCTR_Read_Buffer      |  |
| Am9513 Counters (CTR)         |                        |  |
| Configure Counter             | CTR_Config             |  |
| Count Events                  | CTR_EvCount            |  |
| Count Periods                 | CTR_Period             |  |
| Read Counter                  | CTR_EvRead             |  |
| Stop Counter                  | CTR_Stop               |  |
| Restart Counter               | CTR_Restart            |  |
| Reset Counter                 | CTR_Reset              |  |
| Get Counter Output State      | CTR_State              |  |
| Convert CTR Rate              | CTR_Rate               |  |
| Generate Pulse                | CTR_Pulse              |  |
| Generate Square Wave          | CTR_Square             |  |

**Table 1-3.** The LabWindows/CVI Function Tree for Data Acquisition (Continued)

| LabWindows/CVI Function Panel | NI-DAQ Function            |
|-------------------------------|----------------------------|
| Generate Freq OUT Signal      | CTR_FOUT_Config            |
| Operate Multi Counters        | CTR_Simul_Op               |
| 8253 Counters (ICTR)          |                            |
| Setup Interval Counter        | ICTR_Setup                 |
| Read Interval Counter         | ICTR_Read                  |
| Reset Interval Counter        | ICTR_Reset                 |
| RTSI Bus                      |                            |
| Connect RTSI                  | RTSI_Conn                  |
| Disconnect RTSI               | RTSI_DisConn               |
| Clear RTSI                    | RTSI_Clear                 |
| Clock RTSI                    | RTSI_Clock                 |
| <b>Event Messaging</b>        |                            |
| Config Alarm Deadband         | Config_Alarm_Deadband      |
| Config Analog Trigger Event   | Config_ATrig_Event_Message |
| Config Event Message          | Config_DAQ_Event_Message   |

### **Function Class Descriptions**

The Initialization/Utilities class is used for general board initialization and configuration, configuration retrieval, and setting NI-DAQ properties. This class also contains several useful utility functions.

The Board Config & Calibrate class performs calibration and configuration for specific types of boards.

The Analog Input class contains the classes of functions that perform A/D conversions.

The Single Point class of Analog Input functions performs analog-to-digital (A/D) conversions of a single sample.

The *Multiple Point* class performs clocked, buffered multiple A/D conversions typically used to capture waveforms. This class includes high-level functions and a *Low-Level Functions* subclass. The high-level functions are synchronous; that is, your application is blocked while these functions are performing the requested number of A/D conversions. The low-level functions are asynchronous; that is, your application continues to run while the board performs A/D conversions in the background. The low-level functions also include the double-buffered functions. The *Analog Output* class contains the function classes that perform digital-to-analog (D/A) conversions.

The *Single Point* class of Analog Output functions performs single D/A conversions.

The *Waveform Generation* class performs buffered analog output. The Waveform Generation functions generate waveforms from data contained in an array or a disk file. The *Low-Level Functions* subclass provides a finer level of control in generating multiple D/A conversions.

The *Digital Input/Output* class performs digital input and output operations. It also contains two subclasses. *Group Mode* is a subclass of the *Digital Input/Output* class that contains functions for handshaked digital input and output operations. *Block Transfer* is a subclass of the *Group Mode* class that contains functions for handshaked or clocked, buffered or double-buffered digital input and output operations.

The *Change Notification* class sets up conditions for sending messages to your application when certain digital lines change state.

The *Filtering* class performs signal conditioning of selected digital input lines.

The SCXI class configures the SCXI line of signal conditioning products.

The *Counter/Timer* class of function panels performs counting and timing operations. *DAQ-STC and NI-TIO Counters* is a subclass of Counter/Timer that contains functions that perform operations on the DAQ-STC counters on the E Series and NI-TIO devices. *Am9513 Counters (CTR)* is another subclass of Counter/Timer that contains functions that perform operations on the PC-TIO-10. *8253 Counters (ICTR)* is a subclass of Counter/Timer that contains functions that perform counting and timing operations for the DAQCard-500/700 and 516, Lab and 1200 series, and LPM devices.

The RTSI Bus class of function panels connects control signals to the RTSI bus and to other boards.

The Event Messaging class sets up conditions for sending messages to your application when certain events occur.

# **Function Reference**

This chapter contains a detailed explanation of each NI-DAQ function. The functions are arranged alphabetically.

### Al\_Change\_Parameter

### **Format**

status = AI\_Change\_Parameter (deviceNumber, channel, paramID, paramValue)

### **Purpose**

Selects a specific parameter for the analog input section of the device or an analog input channel. You can select parameters related to analog input not listed here through the AI\_Configure function.

### **Parameters**

### Input

| Name         | Туре | Description                                                              |
|--------------|------|--------------------------------------------------------------------------|
| deviceNumber | i16  | assigned by configuration utility                                        |
| channel      | i16  | number of channel you want to configure; use -1 to indicate all channels |
| paramID      | u32  | identification of the parameter you want to change                       |
| paramValue   | u32  | new value for the parameter specified by paramID                         |

### **Parameter Discussion**

Legal ranges for **paramID** and **paramValue** are given in terms of constants defined in a header file. The header file you should use depends on the language you are using:

• C programmers—NIDAQCNS.H (DATAACQ.H for LabWindows/CVI)

- BASIC programmers—NIDAQCNS.INC (Visual Basic for Windows programmers should refer to the *Programming Language Considerations* in Chapter 1, *Using the NI-DAQ Functions*, for more information.)
- Pascal programmers—NIDAQCNS.PAS

Legal values for **channel** depend on the type of device you are using; analog input channels are labeled 0 through n-1, where n is the number of analog input channels on your device. You can set **channel** to -1 to indicate that you want the same parameter selection for all channels.



**Note** For the 611X devices, specify ND\_PFI\_0 for channel when setting coupling of the PFI\_0 line for the analog trigger.

Legal values for **paramValue** depend on **paramID**. The following paragraph list features you can configure along with legal values for **paramID** with explanations and corresponding legal values for **paramValue**.

### **Channel Coupling**

Some analog input devices have programmable AC/DC coupling for the analog input channels. To change the coupling parameter, set **paramID** to ND\_AI\_COUPLING.

### **Coupling Parameters**

| Device Type  | Per Channel<br>Selection<br>Possible | Legal Range for paramValue | Default Setting |
|--------------|--------------------------------------|----------------------------|-----------------|
| PCI-6110E    | Yes                                  | ND_AC and ND_DC            | ND_DC           |
| PCI-6111E    | Yes                                  | ND_AC and ND_DC            | ND_DC           |
| 445X devices | Yes                                  | ND_AC and ND_DC            | ND_DC           |
| 455X devices | Yes                                  | ND_AC and ND_DC            | ND_DC           |

### **Using This Function**

You can customize the behavior of the analog input section of your device by using this function. Call this function before calling NI-DAQ functions that cause input on the analog input channels. You can call this function as often as needed.

#### **Format**

status = AI\_Check (deviceNumber, readingAvailable, reading)

### **Purpose**

Returns the status of the analog input circuitry and an analog input reading if one is available. AI\_Check is intended for use when A/D conversions are initiated by external pulses applied at the EXTCONV\* pin or, if you are using the E Series devices, at the pin selected through the Select\_Signal function. See DAQ\_Config for information on enabling external conversions.

Chapter 2

#### **Parameters**

### Input

| Name         | Type | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |

### Output

| Name             | Type | Description                    |
|------------------|------|--------------------------------|
| readingAvailable | i16  | whether a reading is available |
| reading          | i16  | integer result                 |

### **Parameter Discussion**

readingAvailable represents the status of the analog input circuitry.

- 1: NI-DAQ returns an A/D conversion result in **reading**.
- 0: No A/D conversion result is available.

**reading** is the integer in which NI-DAQ returns the 12-bit result of an A/D conversion. If the device is configured for unipolar operation, **reading** ranges from 0 to 4,095. If the device is configured for bipolar operation, **reading** ranges from -2,048 to +2,047. For devices with 16-bit ADCs, **reading** ranges from 0 to 65,535 in unipolar operation, and -32,768 to +32,767 in bipolar operation.



**Note** C Programmers—**readingAvailable** and **reading** are pass-by-address parameters.

## **Using This Function**

AI\_Check checks the status of the analog input circuitry. If the device has performed an A/D conversion, AI\_Check returns  $\mathbf{readingAvailable} = 1$  and the A/D conversion result. If the device has not performed this conversion, AI\_Check returns  $\mathbf{readingAvailable} = 0$ .

AI\_Setup, in conjunction with AI\_Check and AI\_Clear, is useful for externally timed A/D conversions. Before you call AI\_Setup, you can call AI\_Clear to clear out the A/D FIFO of any previous conversion results. The device then performs a conversion each time the device receives a pulse at the appropriate pin. You can call AI\_Check to check for and return available conversion results.



**Note** You cannot use this function if you have an SC-2040 connected to your DAQ device.

Chapter 2

# Al Clear

### **Format**

status = AI\_Clear (deviceNumber)

# **Purpose**

Clears the analog input circuitry and empties the FIFO memory.

#### **Parameters**

### Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |

## **Using This Function**

AI\_Clear clears the analog input circuitry and empties the analog input FIFO memory. AI\_Clear also clears any analog input error conditions. Call AI\_Clear before AI\_Setup to clear out the A/D FIFO memory before any series of externally triggered conversions begins.

# AI\_Configure

#### **Format**

status = AI\_Configure (deviceNumber, chan, inputMode, inputRange, polarity, driveAIS)

## **Purpose**

Informs NI-DAQ of the input mode (single-ended or differential), input range, and input polarity selected for the device. Use this function if you have changed the jumpers affecting the analog input configuration from their factory settings. For devices that have no jumpers for analog input configuration, this function programs the device for the settings you want.

#### **Parameters**

### Input

| Name         | Туре | Description                                                                          |
|--------------|------|--------------------------------------------------------------------------------------|
| deviceNumber | i16  | assigned by configuration utility                                                    |
| chan         | i16  | channel to be configured                                                             |
| inputMode    | i16  | indicates whether channels are configured for single-ended or differential operation |
| inputRange   | i16  | voltage range of the analog input channels                                           |
| polarity     | i16  | indicates whether the ADC is configured for unipolar or bipolar operation            |
| driveAIS     | i16  | indicates whether to drive AISENSE to onboard ground                                 |

#### Parameter Discussion

**chan** is the analog input channel to be configured, and since the same analog input configuration applies to all of the channels, except for the E Series devices, set **chan** to -1. For the E Series devices, **chan** specifies the channel to be configured. If you want all of the channels to be configured identically, set **chan** to -1.

Range: See Table B-1, Valid Analog Input Channel Settings, in Appendix B, Analog Input Channel, Gain Settings, and Voltage Calculation.

**inputMode** indicates whether the analog input channels are configured for single-ended or differential operation.

0: Differential (DIFF) configuration (default).

- 1: Referenced Single-Ended (RSE) configuration (used when the input signal does not have its own ground reference. The negative input of the instrumentation amplifier is tied to the instrumentation amplifier signal ground to provide one.)
- 2: Nonreferenced Single-Ended (NRSE) configuration (used when the input signal has its own ground reference. The ground reference for the input signal is connected to AISENSE, which is tied to the negative input of the instrumentation amplifier.)

**inputRange** is the voltage range of the analog input channels. **polarity** indicates whether the ADC is configured for unipolar or bipolar operation.

- 0: Bipolar operation (default value).
- 1: Unipolar operation.

Table 2-1 shows all possible settings for **inputMode**, **inputRange**, and **polarity**. **inputMode** is independent of **inputRange** and **polarity**. In this table, italic text denotes default settings.

**Analog Input Range** Resulting Possible Analog Values for Input Software inputRange **Device** inputMode polarity Range Configurable 12-bit E Series 0, 1, 2 0 to +10 Vignored unipolar Yes and 6052E -5 to +5 V ignored bipolar devices 16-bit E Series, 0, 1, 2 ignored unipolar 0 to +10 VYes (except 6052E ignored bipolar -10 to +10 Vdevices) 0 -10 to 10 V No PCI-6110E. ignored bipolar PCI-6111E Lab-PC+ 0, 1, 2 ignored unipolar 0 to +10 VNo ignored bipolar -5 to +5 V1200 and 0, 1, 2 ignored unipolar 0 to +10 VYes 1200AI Devices ignored bipolar -5 to +5 V

Table 2-1. Parameter Settings for AI\_Configure

|                             |                                     | Analog Input Range |          |                                       |                          |
|-----------------------------|-------------------------------------|--------------------|----------|---------------------------------------|--------------------------|
| Device                      | Possible<br>Values for<br>inputMode | inputRange         | polarity | Resulting<br>Analog<br>Input<br>Range | Software<br>Configurable |
| LPM Devices                 | ignored                             | 5                  | unipolar | 0 to +5 V                             | No                       |
| (RSE inputMode only)        |                                     | 5                  | bipolar  | -2.5 to +2.5<br>V                     | (PC-LPM-16)<br>Yes       |
|                             |                                     | 10                 | unipolar | 0 to +10 V                            | (PC-LPM-16PnP)           |
|                             |                                     | 10                 | bipolar  | −5 to +5 V                            |                          |
| 516 Devices,<br>DAQCard-500 | 1                                   | 10                 | bipolar  | –5 to 5 V                             | N/A                      |
| DAQCard-700                 | 0, 1                                | 5                  | bipolar  | -2.5 to +2.5<br>V                     | Yes                      |
|                             |                                     | 10                 | bipolar  | -5 to +5 V                            |                          |
|                             |                                     | 20                 | bipolar  | -10 to +10 V                          |                          |

**Table 2-1.** Parameter Settings for AI\_Configure (Continued)



**Note** If a device is software-configurable, the **inputMode**, **inputRange**, and **polarity** parameters are used to program the device for the configuration you want. If a device is not software configurable, this function uses these parameters to inform NI-DAQ of the device configuration, which you must set using hardware jumpers. If your device is software configurable and you have changed the analog input settings through Measurement & Automation Explorer, you do not have to use AI\_Configure, although it is good practice to do so in case you inadvertently change the configuration file maintained by Measurement & Automation Explorer.

**driveAIS** is ignored for all other devices. This parameter is present for compatibility reasons only.

Notice that if you have configured any of the input channels in non-reference single-ended (NRSE) mode, this function returns a warning, **inputModeConflict** (18), if you set **driveAIS** to 1. When NI-DAQ reads a channel in NRSE mode, the device uses AISENSE as an input to the negative input of the amplifier, regardless of the **driveAIS** setting. When NI-DAQ reads a channel in differential or reference single-ended (RSE) mode, the device drives AISENSE to onboard ground if **driveAIS** is 1.

When you attach an SC-2040 or SC-2042-RTD to your DAQ device, you must configure channels 0 through 7 for differential mode. When you attach an SC-2043-SG or any SCC accessories to your DAQ device, you must configure these channels for nonreferenced single-ended mode. On the 16-bit E Series devices, the calibration constants used for analog input change depending on the polarity of the analog input channels. NI-DAQ always ensures that the calibration constants in use match the current polarity of the channels.

Chapter 2

See the Calibrate\_E\_Series function description for information about calibration constant loading on the E Series devices.



**Note** The actual loading of calibration constants takes place when you call an AI, DAQ, or SCAN function. On the AT-MIO-16X, the need for reloading the constants depends on the polarity of the channel on which you are doing analog input.

# Al Get Overloaded Channels

#### **Format**

status = AI\_Get\_Overloaded\_Channels (deviceNumber, numChannels, channelList)

## **Purpose**

Returns a list of the channels that experienced an overload condition during an acquisition. Only those channels that are part of the scan are checked for overload.

#### **Parameters**

### Input

| Name         | Type | Description                       |  |
|--------------|------|-----------------------------------|--|
| deviceNumber | i16  | assigned by configuration utility |  |

### Output

| Name        | Type  | Description                                                  |  |
|-------------|-------|--------------------------------------------------------------|--|
| numChannels | i16   | number of channels returned in channelList                   |  |
| channelList | [i16] | contains the channels that experienced an overload condition |  |

### **Parameter Discussion**

**numChannels** is the number of channels contained in the **channelList** output parameter. If no channels experienced an overload condition, **numChannels** will be zero. At most, **numChannels** will equal the number of channels being scanned in the data acquisition.

channelList holds numChannels channel numbers indicating the channels that experienced an overload condition during an acquisition. When calling AI\_Get\_Overloaded\_Channels, the length of channelList should be equal to either the number of channels configured in the SCAN\_Setup numChans parameter or 1 if a single channel data acquisition has been started.

# **Using This Function**

During an acquisition, the signal connected to an analog input channel may exceed the input limits of the ADC and conditioning circuitry on the channel. This condition is called an overload. Status and data retrieval functions, such as DAQ\_Check and DAQ\_Monitor, return an overload warning when the condition occurs, and the acquisition operation continues to run. Use AI\_Get\_Overloaded\_Channels to determine which channels being scanned in the acquisition have experienced an overload. Once an overload occurs on a channel, all calls

to AI\_Get\_Overloaded\_Channels will return the channel is **channelList** until the acquisition is cleared by calling DAQ\_Clear.

See the user manual for your device for more information about how the device responds to an analog input overload.

# Al\_Mux\_Config

#### **Format**

status = AI\_Mux\_Config (deviceNumber, numMuxBrds)

## **Purpose**

Configures the number of multiplexer (AMUX-64T) devices connected to the MIO and AI devices and informs NI-DAQ of the presence of any AMUX-64T devices attached to the system (MIO and AI devices only).

#### **Parameters**

### Input

| Name         | Туре | Description                            |
|--------------|------|----------------------------------------|
| deviceNumber | i16  | assigned by configuration utility      |
| numMuxBrds   | i16  | number of external multiplexer devices |

#### Parameter Discussion

**numMuxBrds** is the number of external multiplexer devices connected.

- 0: No external AMUX-64T devices are connected (default).
- 1. 2. 4: Number of AMUX-64T devices connected.

# **Using This Function**

You can use an external multiplexer device (AMUX-64T) to expand the number of analog input signals that you can measure with the MIO and AI device. The AMUX-64T has 16 separate four-to-one analog multiplexer circuits. One AMUX-64T reads 64 single-ended (32 differential) analog input signals. You can cascade four AMUX-64T devices to permit up to 256 single-ended (128 differential) analog input signals to be read through one MIO or AI device. Refer to Chapter 1, *Introduction to NI-DAQ*, of the *NI-DAQ User Manual for PC Compatibles*. See Chapter 10, *AMUX-64T External Multiplexer Devices*, in the *DAQ Hardware Overview Guide* for more information on using the AMUX-64T.

AI\_Mux\_Config configures the number of multiplexer devices connected to the MIO or AI device. Input channels are then referenced in subsequent analog input calls (AI\_VRead, AI\_Setup, and DAQ\_Start, for example) with respect to the external AMUX-64T analog input channels, instead of the MIO and AI device onboard channel numbers. You need to execute the call to AI\_Mux\_Config only once in an application program.

For the MIO-64 devices, you also must call MIO\_Config if you plan to use AMUX-64T channels. Refer to the MIO\_Config function for further details.



**Note** Some of the digital lines of port 0 on the MIO or AI device with AMUX-64T devices are reserved for AMUX device control. Any attempt to change the port or line direction or the digital values of the reserved line causes an error. Table 2-2 shows the relationship between the number of AMUX-64T devices assigned to the MIO or AI device and the number of digital I/O lines reserved. You can use the remaining lines of port 0. On non-E Series devices, the remaining lines are available for output only.

Table 2-2. Port 0 Digital I/O Lines Reserved

| Number of AMUX-64T Devices<br>Assigned to an MIO or AI Device | Port 0 Digital Lines<br>Reserved |
|---------------------------------------------------------------|----------------------------------|
| 0                                                             | none                             |
| 1                                                             | lines 0 and 1                    |
| 2                                                             | lines 0, 1, and 2                |
| 4                                                             | lines 0, 1, 2, and 3             |

# Al Read

#### **Format**

status = AI\_Read (deviceNumber, chan, gain, reading)

## **Purpose**

Reads an analog input channel (initiates an A/D conversion on an analog input channel) and returns the unscaled result.

#### **Parameters**

### Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |
| chan         | i16  | analog input channel number       |
| gain         | i16  | gain setting for the channel      |

## Output

| Name    | Type | Description                              |
|---------|------|------------------------------------------|
| reading | *i16 | the integer result of the A/D conversion |

#### Parameter Discussion

**chan** is the analog input channel number. If you are using SCXI, you must use the appropriate analog input channel on the DAQ device that corresponds to the SCXI channel you want. To select the SCXI channel, use SCXI\_Single\_Chan\_Setup before calling this function. Refer to Chapter 12, SCXI Hardware, in the DAQ Hardware Overview Guide and the NI-DAQ User Manual for PC Compatibles for more information on SCXI channel assignments.

Range: See Table B-1, Valid Analog Input Channel Settings, in Appendix B, Analog Input Channel, Gain Settings, and Voltage Calculation.

gain is the gain setting you use for the specified channel. This gain setting applies only to the DAQ device. If you are using SCXI, establish any gain you want on the SCXI module either by setting jumpers on the module or by calling SCXI\_Set\_Gain. Refer to Appendix B, Analog Input Channel, Gain Settings, and Voltage Calculation, for valid gain settings. If you use an invalid gain, NI-DAQ returns an error. If you call AI\_Read for the DAQCard-500/700 or 516 or LPM devices, NI-DAQ ignores the gain.

**reading** is the integer in which NI-DAQ returns the 12-bit or 16-bit result of the A/D conversion.

Range: 0 to 4,095 (12-bit devices, unipolar mode).

-2,048 to 2,047 (12-bit devices, bipolar mode). 0 to 65,535 (16-bit devices, unipolar mode). -32,768 to 32,767 (16-bit devices, bipolar mode).



**Note** C Programmers—**reading** is a pass-by-address parameter.

# **Using This Function**

AI\_Read addresses the specified analog input channel, changes the input gain to the specified gain setting, and initiates an A/D conversion. AI\_Read waits for the conversion to complete and returns the result. If the conversion does not complete within a reasonable time, the call to AI\_Read is said to have *timed out* and the **timeOutError** code is returned.

# Al Read Scan

#### **Format**

status = AI\_Read\_Scan (deviceNumber, reading)

## **Purpose**

Returns readings for all analog input channels selected by SCAN\_Setup (E Series devices only, with or without the SC-2040 accessory).

#### **Parameters**

### Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |

### Output

| Name    | Туре  | Description                                     |
|---------|-------|-------------------------------------------------|
| reading | [i16] | readings from each sampled analog input channel |

#### Parameter Discussion

**reading** is an array of readings from each sampled analog input channel. The length of the **reading** array is equal to the number of channels selected in the SCAN\_Setup **numChans** parameter. Range of elements in **reading** depends on your device A/D converter resolution and the unipolar/bipolar selection you made make for a given channel.

# **Using This Function**

AI\_Read\_Scan samples the analog input channels selected by SCAN\_Setup, at half the maximum rate permitted by your data acquisition hardware.

You must use the SCAN\_Setup function prior to invoking this function.

You cannot use external signals to control A/D conversion timing and use this function at the same time.

#### Format

status = AI\_Setup (deviceNumber, chan, gain)

### **Purpose**

Selects an analog input channel and gain setting for externally pulsed conversion operations.

Chapter 2

#### **Parameters**

### Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |
| chan         | i16  | analog input channel number       |
| gain         | i16  | gain setting to be used           |

#### **Parameter Discussion**

**chan** is the analog input channel number. If you are using SCXI, you must use the appropriate analog input channel on the DAQ device that corresponds to the SCXI channel you want. To select the SCXI channel, use SCXI\_Single\_Chan\_Setup before calling this function. Refer to Chapter 12, SCXI Hardware, in the DAQ Hardware Overview Guide and the NI-DAQ User Manual for PC Compatibles for more information on SCXI channel assignments.

Range: See Table B-1, *Valid Analog Input Channel Settings*, in Appendix B, *Analog Input Channel, Gain Settings, and Voltage Calculation*.

gain is the gain setting to use for the specified channel. gain applies only to the DAQ device. If you are using SCXI, establish any gain you want on the SCXI module by setting jumpers on the module (if any) or by calling SCXI\_Set\_Gain. Refer to Appendix B, *Analog Input Channel, Gain Settings, and Voltage Calculation*, for valid gain settings. If you use an invalid gain, NI-DAQ returns an error. If you call AI\_Setup for the 516 and LPM devices or DAQCard-500/700, NI-DAQ ignores the gain.



**Note** This function cannot be used if you have an SC-2040 connected to your DAQ device.

# **Using This Function**

AI\_Setup addresses the specified analog input channel and changes the input gain to the specified gain setting. AI\_Setup, in conjunction with AI\_Check and AI\_Clear, is used for externally timed A/D conversions. If your application calls AI\_Read with channel and gain parameters different from those used in the last AI\_Setup call, you must call AI\_Setup again for AI\_Check to return data from the channel you want at the selected gain.

# Al VRead

#### **Format**

status = AI\_VRead (deviceNumber, chan, gain, voltage)

## **Purpose**

Reads an analog input channel (initiates an A/D conversion on an analog input channel) and returns the result scaled to a voltage in units of volts.

#### **Parameters**

### Input

| Name         | Туре | Description                                       |  |
|--------------|------|---------------------------------------------------|--|
| deviceNumber | i16  | assigned by configuration utility                 |  |
| chan         | i16  | analog input channel number                       |  |
| gain         | i16  | gain setting to be used for the specified channel |  |

### Output

| Name    | Туре | Description                                             |
|---------|------|---------------------------------------------------------|
| voltage | *f64 | the measured voltage returned, scaled to units of volts |

#### **Parameter Discussion**

**chan** is the analog input channel number.

Range: See Table B-1, Valid Analog Input Channel Settings, in Appendix B, Analog

Input Channel, Gain Settings, and Voltage Calculation.

gain is the gain setting to be used for the specified channel. Refer to Appendix B, *Analog Input Channel, Gain Settings, and Voltage Calculation*, for valid gain settings. If you use an invalid gain, NI-DAQ returns an error. If you call AI\_VRead for the 516 and LPM devices or DAQCard-500/700, NI-DAQ ignores the gain.

**voltage** is the floating-point variable in which NI-DAQ returns the measured voltage, scaled to units of volts.



**Note** C Programmers—**voltage** is a pass-by-address parameter.

## **Using This Function**

AI\_VRead addresses the specified analog input channel, changes the input gain to the specified gain setting, and initiates an A/D conversion. AI\_VRead waits for the conversion to complete and then scales and returns the result. If the conversion does not complete within a reasonable time, the call to AI\_VRead is said to have *timed out* and NI-DAQ returns the **timeOutError** code.

When you use SCXI as a front end for analog input to an MIO or AI device, 1200 Series device, LPM device, or DAQCard-700, it is not advisable to use the AI\_VRead function because that function does not take into account the gain of the SCXI module when scaling the data. Use the AI\_Read function to get unscaled data, and then call the SCXI\_Scale function.

When you have an SC-2040 accessory connected to an E Series device, this function takes both the onboard gains and the gains on SC-2040 into account while scaling the data. When you have an SC-2043-SG accessory connected to your DAQ device, this function takes both the onboard gains and the SC-2043-SG fixed gain of 10 into account while scaling the data.

When you have any SCC accessories connected to an E Series device, this function takes both the onboard gains and the SCC gains into account while scaling the data.

# Al VRead Scan

#### **Format**

status = AI\_VRead\_Scan (deviceNumber, reading)

## **Purpose**

Returns readings in volts for all analog input channels selected by SCAN\_Setup (E Series devices only with or without the SC-2040 accessory).

#### **Parameters**

### Input

| Name         | Туре | Description                       |  |
|--------------|------|-----------------------------------|--|
| deviceNumber | i16  | assigned by configuration utility |  |

### Output

| Name    | Туре  | Description                                             |  |
|---------|-------|---------------------------------------------------------|--|
| reading | [f64] | voltage readings from each sampled analog input channel |  |

#### Parameter Discussion

**reading** is an array of readings from each sampled analog input channel. The length of the **reading** array is equal to the number of channels selected in the SCAN\_Setup **numChans** parameter. NI-DAQ uses values you have specified in SCAN\_Setup through the **gains** parameter for computing voltages. If you have attached an SC-2040 or SC-2043-SG to your DAQ device, NI-DAQ also uses values you have specified in SC\_2040\_Config (through the **sc2040gain** parameter) or Set\_DAQ\_Device\_Info (a fixed gain of 10) for computing voltages.

If you have SCC modules connected, NI-DAQ also uses the SCC module gain for computing voltages.

# **Using This Function**

AI\_VRead\_Scan samples the analog input channels selected by SCAN\_Setup, at half the maximum rate your DAQ hardware permits. You must use the SCAN\_Setup function prior to invoking this function.

You cannot use external signals to control A/D conversion timing and use this function at the same time.

# Al VScale

#### **Format**

status = AI\_VScale (deviceNumber, chan, gain, gainAdjust, offset, reading, voltage)

## **Purpose**

Converts the binary result from an AI\_Read call to the actual input voltage.

#### **Parameters**

### Input

| Name         | Туре | Description                               |  |
|--------------|------|-------------------------------------------|--|
| deviceNumber | i16  | assigned by configuration utility         |  |
| chan         | i16  | channel on which binary reading was taken |  |
| gain         | i16  | gain setting used to take the reading     |  |
| gainAdjust   | f64  | multiplying factor to adjust gain         |  |
| offset       | f64  | binary offset present in reading          |  |
| reading      | i16  | result of the A/D conversion              |  |

## **Output**

| Name    | Туре | Description                     |
|---------|------|---------------------------------|
| voltage | *f64 | computed floating-point voltage |

#### **Parameter Discussion**

**chan** is the onboard channel or AMUX channel on which NI-DAQ took the binary reading using AI\_Read. For devices other than the E Series devices, this parameter is ignored because the scaling calculation is the same for all of the channels. However, National Instruments recommends you to pass the correct channel number.

gain is the gain setting that you used to take the analog input reading. If you used SCXI to take the reading, this gain parameter should be the product of the gain on the SCXI module channel and the gain that the DAQ device used. Refer to Appendix B, *Analog Input Channel, Gain Settings, and Voltage Calculation*, for valid gain settings. Use of invalid gain settings causes NI-DAQ to return an error unless you are using SCXI. If you call AI\_VScale for the 516 and LPM devices or DAQCard-500/700, NI-DAQ ignores the gain unless you are using SCXI.

**gainAdjust** is the multiplying factor to adjust the gain. Refer to Appendix B, *Analog Input Channel, Gain Settings, and Voltage Calculation*, for the procedure for determining **gainAdjust**. If you do not want to do any gain adjustment—for example, use the ideal gain as specified by the **gain** parameter—set **gainAdjust** to 1.

**offset** is the binary offset that needs to be subtracted from the **reading**. Refer to Appendix B, *Analog Input Channel, Gain Settings, and Voltage Calculation*, for the procedure for determining **offset**. If you do not want to do any offset compensation, set **offset** to 0.

**reading** is the result of the A/D conversion returned by AI\_Read.

voltage is the variable in which NI-DAQ returns the input voltage converted from reading.



**Note** C Programmers—voltage is a pass-by-address parameter.

## **Using This Function**

Refer to Appendix B, *Analog Input Channel, Gain Settings, and Voltage Calculation*, for the formula AI\_VScale uses to calculate **voltage** from **reading**.

If your device polarity and range settings differ from the default settings shown in the Init\_DA\_Brds function, be sure to call AI\_Configure to inform the driver of the correct polarity and range before using this function.

# Align DMA Buffer

#### **Format**

status = Align\_DMA\_Buffer (deviceNumber, resource, buffer, count, bufferSize, alignIndex)

## **Purpose**

Aligns the data in a DMA buffer to avoid crossing a physical page boundary. This function is for use with DMA waveform generation and digital I/O pattern generation (AT-DIO-32F only).

Chapter 2

### **Parameters**

### Input

| Name         | Туре | Description                                                     |  |
|--------------|------|-----------------------------------------------------------------|--|
| deviceNumber | i16  | assigned by configuration utility                               |  |
| resource     | i16  | represents the DAC channel or the digital input or output group |  |
| count        | u32  | number of data samples                                          |  |
| bufferSize   | u32  | actual size of <b>buffer</b>                                    |  |

# Input/Output

| Name   | Туре  | Description                 |
|--------|-------|-----------------------------|
| buffer | [i16] | conversion samples returned |

# Output

| Name       | Туре | Description                                    |  |
|------------|------|------------------------------------------------|--|
| alignIndex | *u32 | offset into the array of the first data sample |  |

### **Parameter Discussion**

**resource** represents the DAC channel (for waveform generation) or the digital input or output group (for pattern generation) for which NI-DAQ uses the buffer.

- 0: DAC channel 0.
- 1: DAC channel 1.
- 2: DAC channels 0 and 1.
- 11: DIG group 1 (group size of 2).

- 12: DIG group 2 (group size of 2).
- 13: DIG group 1 (group size of 4).

**buffer** is the integer array of samples NI-DAQ uses in the waveform or pattern generation. The actual size of **buffer** should be larger than the number of samples to make room for possible alignment. If the actual size of the buffer is not big enough for alignment, the function returns a **memAlignmentError**. For Windows applications running in real or standard mode, a **bufferSize** of 2\***count** guarantees that there is enough room for alignment.

count is the number of data samples contained in buffer.

Range:  $3 \text{ through } 2^{32} - 1.$ 

bufferSize is the actual size of buffer.

Range: **count** through  $2^{32}-1$ .

**alignIndex** is the variable in which NI-DAQ returns the offset into the array of the first data sample. If NI-DAQ did not have to align the buffer, NI-DAQ returns **alignIndex** as 0, indicating that the data is still located at the beginning of the buffer. If NI-DAQ aligned the buffer to avoid a page boundary, **alignIndex** is a value other than 0, and the first data sample is located at **buffer[alignIndex]** (if your array is zero based). If you use digital input with an aligned buffer, NI-DAQ stores the data in the buffer beginning at **alignIndex**.



**Note** C Programmers—**alignIndex** is a pass-by-address parameter.

## **Using This Function**

Use Align\_DMA\_Buffer to avoid the negative effects of page boundaries in the data buffer on AT bus machines for the following cases:

- DMA waveform generation at close to maximum speed.
- Digital I/O pattern generation at close to maximum speed.
- Interleaved DMA waveform generation at any speed.
- 32-bit digital I/O pattern generation at any speed.

The possibility of a page boundary occurring in the data buffer increases with the size of the buffer. When a page boundary occurs in the data buffer, NI-DAQ must reprogram the DMA controller before NI-DAQ can transfer the next data sample. The extra time needed to do the reprogramming increases the minimum update interval (thus decreasing the maximum update rate).

A page boundary in an interleaved DMA waveform buffer or a buffer that is to be used for 32-bit digital pattern generation can cause unpredictable results, regardless of your operating speed. To avoid this problem, you should *always* use Align\_DMA\_Buffer with interleaved DMA waveform generation (indicated by **resource** = 2) and 32-bit digital pattern generation (indicated by **resource** = 13). In these two cases, Align\_DMA\_Buffer first attempts to align

the buffer so that the data completely avoids a page boundary. If **bufferSize** is not big enough for complete alignment, the function attempts to partially align the data to ensure that a page boundary does not cause unpredictable results. Partial alignment is possible if **bufferSize**  $\geq$  **count** + 1. If neither form of alignment is possible, the function returns an error. If Align\_DMA\_Buffer partially aligned the data, the function returns a **memPageError** warning indicating that a page boundary is still in the data.



**Note** Physical DMA page boundaries do not exist on EISA bus computers. However, page boundaries can be introduced on these computers as a side effect of Windows 386 Enhanced mode and the Windows NT virtual memory management system. This happens when a buffer is locked into physical memory in preparation for a DAQ operation. If the memory manager cannot find a contiguous space large enough, it fragments the buffer, placing pieces of it here and there in physical memory. This type of page boundary only affects the performance on an AT bus computer. NI-DAQ uses the DMA chaining feature available on EISA computers to chain across page boundaries, thus avoiding the delay involved in DMA programming.

Call Align\_DMA\_Buffer *after* your application has loaded **buffer** with the data samples (for waveform generation or digital output) and *before* calling WFM\_Op, WFM\_Load, DIG\_Block\_In, or DIG\_Block\_Out. You should pass the aligned buffer to the waveform generation and pattern generation functions the *same* way you would an unaligned buffer. The **count** parameter in the waveform generation or pattern generation function call should be the same as the **count** parameter passed to Align\_DMA\_Buffer, not **bufferSize**.

If you want to access the data in **buffer** after calling Align\_DMA\_Buffer, access the data starting at **buffer**[alignIndex] (if your array is zero based).

After using an aligned buffer for waveform generation or pattern generation, NI-DAQ *unaligns* the data. After the buffer has been unaligned, the first data sample is at offset zero of the buffer again. If you want to use the buffer for waveform generation or pattern generation again after it has been unaligned, you must make another call to Align\_DMA\_Buffer before calling WFM\_Op, WFM\_Load, DIG\_Block\_In, or DIG\_Block\_Out.

See Waveform Generation Application Hints and Digital I/O Application Hints in Chapter 3, Software Overview, of the NI-DAQ User Manual for PC Compatibles for more information on the use of Align\_DMA\_Buffer. See Chapter 4, DMA and Programmed I/O Performance Limitations, of the NI-DAQ User Manual for PC Compatibles for a discussion of DMA page boundaries and special run-time considerations.

# **AO** Calibrate

#### **Format**

status = AO\_Calibrate (deviceNumber, operation, EEPROMIoc)

## **Purpose**

Loads a set of calibration constants into the calibration DACs or copies a set of calibration constants from one of four EEPROM areas to EEPROM area 1. You can load an existing set of calibration constants into the calibration DACs from a storage area in the onboard EEPROM. You can copy EEPROM storage areas 2 through 5 (EEPROM area 5 contains the factory calibration constants) to storage area 1. NI-DAQ automatically loads the calibration constants stored in EEPROM area 1 the first time a function pertaining to the AT-AO-6/10 is called. The 6704 devices automatically load the calibration constants stored in EEPROM area 1 on power-up.



**Note** Use the calibration utility provided with the AT-AO-6/10 to perform a calibration procedure. Refer to the calibration chapter in the *AT-AO-6/10 User Manual* for more information regarding the calibration procedure.

#### **Parameters**

### Input

| Name         | Туре | Description                            |  |
|--------------|------|----------------------------------------|--|
| deviceNumber | i16  | assigned by configuration utility      |  |
| operation    | i16  | operation to be performed              |  |
| EEPROMloc    | i16  | storage location in the onboard EEPROM |  |

### **Parameter Discussion**

**operation** determines the operation to be performed.

- 1: Load calibration constants from **EEPROMIoc**.
- Copy calibration constants from **EEPROMloc** to EEPROM user calibration area 1.

**EEPROMIoc** selects the storage location in the onboard EEPROM to be used. You can use different sets of calibration constants to compensate for configuration or environmental changes.

- 1: User calibration area 1.
- 2: User calibration area 2.
- 3: User calibration area 3.

- 4: User calibration area 4.
- 5: Factory calibration area.



**Note** Locations 2 through 4 are not available for the 6704 family.

## **Using This Function**

When NI-DAQ initializes the AT-AO-6/10, the DAC calibration constants stored in **EEPROMloc** 1 (user calibration area 1) provide the gain and offset values used to ensure proper device operation. In other words, <code>Init\_DA\_Brds</code> performs the equivalent of calling <code>AO\_Calibrate</code> with operation set to 1 and **EEPROMloc** set to 1. When the AT-AO-6/10 leaves the factory, **EEPROMloc** 1 contains a copy of the calibration constants stored in **EEPROMloc** 5, the factory area.

A calibration procedure performed in bipolar mode is not valid for unipolar and vice versa. See the calibration chapter of the *AT-AO-6/10 User Manual* for more information regarding calibrating the device.

The 6704 devices automatically load the calibration constants stored in **EEPROMloc1** at power-up. **EEPROMloc** 5 contains the factory calibration values. When a 6704 device leaves the factory, **EEPROMloc** 1 contains a copy of the factory calibration constants stored in **EEPROMloc** 5. To save a new set of calibration constants to the EEPROM, call AO\_Calibrate with **operation** set to 2. See the calibration section of the *PCI/PXI-6704 User Manual* for more information regarding calibrating this device.

# AO\_Change\_Parameter

#### **Format**

status = AO\_Change\_Parameter (deviceNumber, channel, paramID, paramValue)

## **Purpose**

Selects a specific parameter setting for the analog output section of the device or an analog output channel. You can select parameters related to analog output not listed here through the AO\_Configure function.

#### **Parameters**

### Input

| Name         | Туре | Description                                                                        |  |
|--------------|------|------------------------------------------------------------------------------------|--|
| deviceNumber | i16  | assigned by configuration utility                                                  |  |
| channel      | i16  | number of channel you want to configure; you can use $-1$ to indicate all channels |  |
| paramID      | u32  | identification of the parameter you want to change                                 |  |
| paramValue   | u32  | new value for the parameter specified by paramID                                   |  |

#### **Parameter Discussion**

Legal ranges for **paramID** and **paramValue** are given in terms of constants defined in a header file. The header file you should use depends on the language you are using:

- C programmers—NIDAQCNS.H (DATAACQ.H for LabWindows/CVI)
- BASIC programmers—NIDAQCNS.INC (Visual Basic for Windows programmers should refer to the *Programming Language Considerations* in Chapter 1, *Using the NI-DAQ Functions*, for more information.)
- Pascal programmers—NIDAQCNS.PAS

Legal values for **channel** depend on the type of device you are using; analog output channels are labeled 0 through n-1, where n is the number of analog output channels on your device. You can set **channel** to -1 to indicate that you want the same parameter selection for all channels. You must set **channel** to -1 to change a parameter you cannot change on per channel basis.

Legal values for **paramValue** depend on **paramID**. The following paragraphs list features you can configure along with legal values for **paramID** with explanations and corresponding legal values for **paramValue**.

## Reglitching

Every time you change the state of your DAC, a very small glitch is generated in the signal generated by the DAC. When reglitching is turned off, glitch size depends on the binary patterns that are written into the DAC; the glitch is largest when the most significant bit in the pattern changes (when the waveform crosses the midrange of the DAC); it is smaller in other cases. When reglitching is turned on, the glitch size is much less dependent on the bit pattern.

To change the reglitching parameter, set **paramID** to ND\_REGLITCH.

If you are not concerned about this, you are likely to be satisfied by the default values NI-DAQ selects for you if you do not call this function. The following table lists devices on which you can change this parameter.

| Device Type                                                                                                                        | Per Channel<br>Selection Possible | Legal Range for paramValue | Default Setting for paramValue |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------|--------------------------------|
| AT-MIO-16E-1<br>AT-MIO-16E-2<br>AT-MIO-64E-3<br>NEC-MIO-16E-4<br>PCI-MIO-16E-1<br>VXI-MIO-64E-1<br>VXI-MIO-64XE-10<br>671X devices | Yes                               | ND_OFF and<br>ND_ON        | ND_OFF                         |

**Table 2-3.** Reglitching Parameters for Permissible Devices

# **Voltage or Current Output**

Some devices require separate calibration constants for voltage and current outputs. Setting the output type to voltage or current for these devices causes the driver to use the correct calibration constants and to interpret the input data correctly in AO\_VWrite. To change the output type, set **paramID** to ND\_OUTPUT\_TYPE.

| Device Type                    | Per Channel<br>Selection Possible | Legal Range for paramValue | Default Setting for paramValue |
|--------------------------------|-----------------------------------|----------------------------|--------------------------------|
| PC-AO-2DC                      | Yes                               | ND_CURRENT_OUTPUT          | ND_VOLTAGE_OUTPUT              |
| DAQCard-AO-2DC<br>VXI-AO-48XDC |                                   | and ND VOLTAGE OUTPUT      |                                |
| VAI-AO-40ADC                   |                                   | ND_VOLIAGE_OUTFUT          |                                |

**Table 2-4.** Voltage or Current Output Parameters

For the VXI-AO-48XDC device, the **paramID** of ND\_OUTPUT\_TYPE is used in conjunction with the channel value to select the analog output channel to be affected. To select a voltage channel, set the **paramValue** to ND\_VOLTAGE. To select a current channel, set the **paramValue** to ND\_CURRENT.

#### FIFO Transfer Condition

You can specify the condition that causes more data to be transferred from the waveform buffer into the analog output FIFO. NI-DAQ selects a default setting for you, in order to achieve maximum performance. However, by changing this setting, you can force the FIFO to remain as full as possible, or effectively disable, or reduce the size of the FIFO.

For example, to reduce the FIFO *lag effect* (the amount of time it takes data to come out of the FIFO after being transferred into the FIFO), you can change the FIFO transfer condition to FIFO empty. Notice that reducing the effective FIFO size can also reduce the maximum sustainable update rate.

To change the FIFO transfer condition, set **paramID** to ND\_DATA\_TRANSFER\_CONDITION, and set **paramValue** to one of the values shown in Table 2-5.

| Transfer Condition                           | NI-DAQ Constant                      |
|----------------------------------------------|--------------------------------------|
| FIFO not full                                | ND_FIFO_NOT_FULL                     |
| FIFO half-full or less                       | ND_FIFO_HALF_FULL_OR_LESS            |
| FIFO empty                                   | ND_FIFO_EMPTY                        |
| FIFO half-full or less until full (DMA only) | ND_FIFO_HALF_FULL_OR_LESS_UNTIL_FULL |

**Table 2-5.** Parameter Values for FIFO Transfer Conditions

Set **channel** to one of the channel numbers in your waveform group. For example, if you have configured group 1 to contain channels 0 and 1, you can set **channel** to 0 or 1.



**Note** The option to set the channel to one of the channel numbers in your waveform group is valid only for PCI/PXI/1394 E Series and 671*X* devices.

When using PCI/PXI/1394 E Series or 671X devices with DMA (default data transfer condition), the device has an effective FIFO size 32 samples larger than the FIFO size specified for the board. This is due to a 32-sample FIFO on the miniMITE, the onboard DMA controller used for DMA transfers.

### **FIFO Transfer Count**

The FIFO transfer count specifies the number of samples to be transferred from the waveform buffer into the analog output FIFO when FIFO requests are generated. This option is for use in conjunction with the FIFO transfer condition, as described in the previous section.

AO\_Change\_Parameter should be called once to set the FIFO transfer condition, and can optionally be called again to specify the FIFO transfer count. If you do not specify the FIFO transfer count, NI-DAQ chooses an appropriate value for you.

The value of FIFO transfer count is used during interrupt-driven waveform generation but is ignored during DMA-driven waveform generation. When you use DMA, DMA requests are generated as long as the transfer condition is true.

Table 2-6 contains the default values that are used if you do not specify FIFO transfer count, in addition to the valid values that you can set.

| Transfer Condition                           | Default Transfer Count                                              | Valid Input Values |
|----------------------------------------------|---------------------------------------------------------------------|--------------------|
| FIFO not full                                | 1                                                                   | 1                  |
| FIFO half-full or less                       | half-FIFO size                                                      | 1—half-FIFO size   |
| FIFO empty                                   | 1                                                                   | 1—FIFO size        |
| FIFO half-full or less until full (DMA only) | FIFO transfer count cannot be specified for this transfer condition | N/A                |

Table 2-6. Default Values for FIFO Transfer Condition

For example, if you choose the **FIFO empty** transfer condition and set the transfer count to 10, each time the board is interrupted with a FIFO empty interrupt, NI-DAQ transfers 10 samples from the user buffer into the analog output FIFO. Although this does not improve the maximum sustainable update rate, it reduces the number of interrupts, and reduces the FIFO lag effect to a maximum of 10 samples.

If you choose the **FIFO half full or less** transfer condition and set the transfer count to 100 on a board with a 2,048-sample FIFO, the FIFO fills with a maximum of 1,124 samples (half the FIFO plus 100 samples). Each time the number of samples in the FIFO falls to less than 1,024, another interrupt is generated, at which time 100 samples are transferred from the waveform buffer to the FIFO.

To change the FIFO transfer count, set **paramID** to ND\_FIFO\_TRANSFER\_COUNT and use **paramValue** to pass in a 32-bit integer.

Set **channel** to one of the channel numbers in your waveform group. For example, if you have configured group 1 to contain channels 0 and 1, you can set **channel** to 0 or 1.



**Note** The option to set the **channel** to one of the channel numbers in your waveform group is valid only for PCI/PXI/1394 E Series and 671X devices.

#### **Ground DAC Reference**

You can ground the reference that the analog output channels use, which causes the output voltage to remain at 0 V, regardless of the value you write to the channel.

To change the grounding of the DAC Reference, set **paramID** to ND\_GROUND\_DAC\_REFERENCE, and set **paramValue** to either ND\_YES, or ND\_NO. The effect is immediate. Also, grounding the DAC reference on one channel has the effect of grounding



**Note** The option to set the **channel** to one of the channel numbers in your waveform group is valid only for PCI/PXI/1394 E Series and 671X devices.

## **Output Enable**

On some of the devices, you can disable the output even when the waveform generation is in progress. You can use this feature to bring the output to a known level at any time.

To change the output enable setting, set **paramID** to ND\_OUTPUT\_ENABLE.

it for both channels, so you can specify either 0 or 1 for channel number.

| Device Type                     | Per Channel<br>Selection Possible | Legal Range<br>for paramValue | Default Setting for paramValue |
|---------------------------------|-----------------------------------|-------------------------------|--------------------------------|
| 4451, 4453, and 4551<br>devices | Yes                               | ND_YES and<br>ND_NO           | ND_NO                          |

**Table 2-7.** Parameter Setting Information for Output Enable

# **Output Attenuation**

Some devices have attenuators after the final amplifier stage. By attenuating the output signal, you do not lose any dynamic range of the signal; that is, you do not lose any bits from the digital representation of the signal, because the attenuation is done after the DAC and not before it.

Attenuation (in mdB) = 
$$-[20 \log_{10} (V_o/V_i)]*1000$$

 $V_o$  = The voltage level that you want for the output signal.

 $V_i$  = The input voltage level.

The 4451 and 4551 devices have three levels of attenuation providing voltage ranges of -10 to +10 V, -1 to +1 V, and -100 to +100 mV.

To change the output attenuation setting set **paramID** to ND\_ATTENUATION. You can change the attenuation at any time.



**Note** The values are set up in millidecibels.

**Table 2-8.** Parameter Setting Information for Output Attenuation

| Device Type                  | Per Channel<br>Selection Possible | Legal Range<br>for paramValue | Default Setting for paramValue |
|------------------------------|-----------------------------------|-------------------------------|--------------------------------|
| 4451, 4453, and 4551 devices | Yes                               | 0, 20,000, 40,000             | 0                              |

## **End of Buffer Interrupts**

On PCI/PXI/1394 E Series and 671*X* boards that use the PCI-MITE for DMA transfers, NI-DAQ causes the PCI-MITE to generate an interrupt after a full buffer has been transferred from host memory to the DAQ device. With one-shot operations, where the buffer is only output once, or even during continuous operations where the buffer is very large, these interrupts place very little burden on the system. However, when outputting a large number of iterations with small buffers or at high speeds, these interrupts can affect overall system performance.

These interrupts are generated so that NI-DAQ will read the state of the DMA controller and track the number of iterations and the number of points transferred since the beginning of the operation. The PCI-MITE has a 32-bit counter that counts bytes transferred. The only drawback in turning off these interrupts is that NI-DAQ might not have a chance to detect an overflow of the counter. For example, when generating a waveform on one channel at 1 Msamples/s, the counter will overflow in 36 minutes. If you disable end-of-buffer interrupts and do not query NI-DAQ for status information before the counter overflows, NI-DAQ will not be able to take the overflow into account, and the status information returned could be incorrect.

To enable/disable end-of-buffer interrupts, set **paramID** to ND\_LINK\_COMPLETE\_INTERRUPTS and set **paramValue** to either ND\_ON or ND\_OFF. You may specify any channel in the waveform group, and the setting will apply to all channels in the group.



**Note** This option is valid only for PCI/CPCI/PXI/1394 E Series and 671X devices.

## **Memory Transfer Width**

When doing waveform generation on PCI/PXI/1394 E Series boards that use the PCI-MITE for DMA transfers, NI-DAQ transfers data from host memory to the DAQ device 16 bits at a time. This allows for the finest level of control and is necessary to properly support features like **oldDataStop** and **partialTransferStop** (see the NI-DAQ function WFM\_DB\_Config).

It is also possible to transfer data from host memory to the DAQ device 32 bits at a time, which requires fewer PCI bus cycles so that the DAQ device functions more effectively with the PCI bus. The only drawback is that when using **oldDataStop** and **partialTransferStop**, the waveform may stop one sample earlier than you would otherwise expect.

To set the memory transfer width, set **paramID** to ND\_MEMORY\_TRANSFER\_WIDTH and set **paramValue** to either 16 or 32. You may specify any channel in the waveform group, and the setting will apply to all channels in the group.



**Note** This option is valid only for PCI/CPCI/PXI/1394 E Series devices. For 61*XX* and 671*X* devices, only even-sized buffers are allowed, and the memory transfer width is always 32 bits.

# AO\_Configure

#### **Format**

status = AO\_Configure (deviceNumber, chan, outputPolarity, intOrExtRef, refVoltage, updateMode)

## **Purpose**

Informs NI-DAQ of the output range and polarity selected for each analog output channel on the device and indicates the update mode of the DACs. If you have recorded an analog output configuration that is not a default through Measurement & Automation Explorer, you do not need to use AO\_Configure because NI-DAQ uses the settings recorded by Measurement & Automation Explorer. If you have a software-configurable device, you can use AO\_Configure to change the analog output configuration on the fly.



**Caution** For the AT-AO-6/10, NI-DAQ records the configuration information for output polarity and update mode in channel pairs. A call to AO\_Configure records the same output polarity and update mode selections for both channels in a pair.

#### **Parameters**

### Input

| Name           | Туре | Description                       |
|----------------|------|-----------------------------------|
| deviceNumber   | i16  | assigned by configuration utility |
| chan           | i16  | analog output channel number      |
| outputPolarity | i16  | unipolar or bipolar               |
| intOrExtRef    | i16  | reference source                  |
| refVoltage     | f64  | voltage reference value           |
| updateMode     | i16  | when to update the DACs           |

#### **Parameter Discussion**

chan is the analog output channel number.

Range: 0 or 1 for the AO-2DC, Lab and 1200 Series analog output devices, and

MIO devices.

0 through 5 for the AT-AO-6. 0 through 9 for the AT-AO-10.

0 through 47 for the VXI-AO-48XDC.

0 through 15 for the 6704 device voltage channels.

16 through 31 for the 6704 current channels.

0 through 3 for the PCI-6711. 0 through 7 for the PCI-6713.

**outputPolarity** indicates whether the analog output channel is configured for unipolar or bipolar operation.

For the AT-AO-6/10 and MIO devices (except the MIO-16XE-50 devices):

- 0: Bipolar operation (default setting, output range is from **-refVoltage** to +**refVoltage**).
- 1: Unipolar operation (output range is from 0 to +**refVoltage**).

For the Lab and 1200 Series analog output devices:

- 0: Bipolar operation (default setting, output range is from -5 to +5 V).
- 1: Unipolar operation (output range is from 0 to +10 V).

For the 671X and MIO-16XE-50 devices:

0: Bipolar operation (output range is from -10 to +10 V).

For the AO-2DC devices:

- 0: Bipolar operation (output range is from -5 to +5 V).
- 1: Unipolar operation (default setting, output range is from 0 to +10 V or 0 to 20 mA).

For the 6704 devices and the VXI-AO-48XDC:

- 0: Bipolar operation (voltage only; output range is from -10.24 to +10.24 V).
- 1: Unipolar operation (current only; output range is from 0 to 20.47 mA).

intOrExtRef indicates the source of voltage reference.

- 0: Internal reference.
- 1: External reference.

The AT-AO-6/10, 12-bit MIO, and 6052E devices support external analog output voltage references. The other 16-bit E Series and 671X devices do not support external references.

For the 6704 devices, only internal reference is supported.

**refVoltage** is the analog output channel voltage reference value. You can configure each channel to use an internal reference of +10 V (the default) or an external reference. Although each pair of channels is served by a single external reference connection, the configuration of the external reference operates on a per channel basis. Therefore, it is possible to have one channel in a pair internally referenced and the other channel in the same pair externally referenced.

Range: -10 to +10 V.

If you make a reference voltage connection, you must assign **refVoltage** the value of the external reference voltage in a call to AO\_Configure for the AO\_VWrite and AO\_VScale functions to operate properly. For devices that have no external reference pin, the output range is determined by **outputPolarity**, and NI-DAQ ignores this parameter.

**updateMode** indicates whether an analog output channel is updated when written to:

- 0: Updated when written to (default setting).
- 1: Not updated when written to, but updated later after a call to AO\_Update (later internal update mode).
- 2: Not updated when written to, but updated later upon application of an active low pulse. You should apply this pulse to the following:
  - EXTUPDATE pin for the AT-AO-6/10 and Lab and 1200 Series analog output devices (later external update mode).
  - PFI5 pin for the E Series and 671X devices. To alter the pin and polarity selections you make with this function, for an E Series or 671X device, you can call Select\_Signal with signal = ND\_OUT\_UPDATE after you call AO\_Configure.



**Note** This mode is not valid for the VXI-AO-48XDC or the 6704 devices.

# **Using This Function**

AO\_Configure stores information about the analog output channel on the specified device in the configuration table for the analog channel. For the AT-AO-6/10, the **outputPolarity** and **updateMode** information is stored for channel pairs. For example, analog output channels 0 and 1 are grouped in a channel pair, and a call to AO\_Configure for channel 0 records the **outputPolarity** and **updateMode** for both channels 0 and 1. Likewise, a call to AO\_Configure for channel 1 records the **outputPolarity** and **updateMode** for both channels 0 and 1. The AT-AO-6/10 channel pairs are as follows:

#### AT-AO-6/10 channel pairs:

- Channels 0 and 1.
- Channels 2 and 3.
- Channels 4 and 5.
- Channels 6 and 7 (AT-AO-10 only).
- Channels 8 and 9 (AT-AO-10 only).

AO\_Configure stores information about the analog output channel on the specified board in the configuration table for the analog channel. The analog output channel configuration table defaults tables default to the following:

• MIO device, 671X device, and AT-AO-6/10:

```
    outputPolarity = 0: Bipolar.
    refVoltage = 10 V.
    updateMode = 0: Update when written to.
```

• Lab and 1200 Series analog output devices:

```
outputPolarity = 0: Bipolar (-5 \text{ to } +5 \text{ V}). updateMode = 0: Updated when written to.
```

• 6704 device voltage channels and the VXI-AO-48XDC:

```
outputPolarity = 0: Bipolar (-10.24 to +10.24 V). updateMode = 0: Updated when written to.
```

• 6704 device current channels:

```
outputPolarity = 1: Unipolar (0 to 20.47 mA). updateMode = 0: Updated when written to.
```

If you configure an output channel for later internal update mode (**updateMode** = 1), you can configure no other output channels for later external update mode (**updateMode** = 2). Likewise, if you configure an output channel for later external update mode, you can configure no other output channels for later internal update mode.

If the physical configuration (the jumpered settings) of the analog output channels on your device differs from the default setting, you must call AO\_Configure with the true configuration information for the remaining analog output functions to operate properly.



**Note** The AT-AO-6/10 allows you to physically configure each analog output channel (the jumper setting) for bipolar or unipolar operation. To ensure proper operation, configure both channels in a channel pair the same way.

On the E Series devices (except MIO-16XE-50 devices), the calibration constants used for analog output change depending on the polarity of the analog output channels. NI-DAQ always ensures that the calibration constants in use match the current polarity of the channels.

The actual loading of calibration constants takes place when you call an AO or WFM function. See the Calibrate\_E\_Series function description for information about calibration constant loading on the E Series devices.

# AO\_Update

## **Format**

status = AO\_Update (deviceNumber)

# **Purpose**

Updates analog output channels on the specified device to new voltage values when the later internal update mode is enabled by a previous call to AO\_Configure.

#### **Parameters**

### Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |

# **Using This Function**

AO\_Update issues an update pulse to all analog output channels on the specified device. All analog output channel voltages then simultaneously change to the last value written.

## **AO VScale**

### **Format**

status = AO\_VScale (deviceNumber, chan, voltage, binVal)

## **Purpose**

Scales a voltage to a binary value that, when written to one of the analog output channels, produces the specified voltage.

#### **Parameters**

### Input

| Name         | Туре | Description                                          |  |
|--------------|------|------------------------------------------------------|--|
| deviceNumber | i16  | assigned by configuration utility                    |  |
| chan         | i16  | analog output channel number                         |  |
| voltage      | f64  | voltage, in volts, to be converted to a binary value |  |

## Output

| Name   | Туре | Description                     |
|--------|------|---------------------------------|
| binVal | *i16 | converted binary value returned |

### **Parameter Discussion**

chan is the analog output channel number.

Range: 0 or 1 for the Lab and 1200 Series analog output devices, and MIO devices.

0 through 5 for AT-AO-6.

0 through 10 for AT-AO-10.

0 through 47 for the VXI-AO-48XDC.

0 through 15 for the 6704 device voltage channels. 16 through 31 for the 6704 device current channels.

0 through 3 for the PCI-6711. 0 through 7 for the PCI-6713.



**Note** C Programmers—**binVal** is a pass-by-address parameter.

## **Using This Function**

Using the following formula, AO\_VScale calculates the binary value to be written to the specified analog output channel to generate an output voltage corresponding to **voltage**.

where values of **refVoltage** and maxBinVal are appropriate for your device and current configuration.

Notice that **refVoltage** is the value you specify in AO\_Configure. Because you can independently configure the analog output channels for range and polarity, NI-DAQ can translate the same voltage to different values for each channel.

For the 6704 devices, a different formula is used depending on the type of channel to which **chan** refers. For a voltage channel, **voltage** indicates the voltage in volts, for a current channel, **voltage** indicates the current in milliamps.

- Voltage Channel: binVal = ((voltage + 10.24)/20.48) \* 65536
- Current Channel: **binVal** = ((voltage + 0.01)/20.48) \* 65536



**Note** Some inaccuracy results in the **binVal** parameter when you use this function on the VXI-AO-48XDC, because this device works with a larger analog output resolution than can be represented by the 16-bit binary output value for AO\_VScale. The binary output value is designated as the most significant 16 bits of the scaling operation to minimize this inaccuracy. Use the AO\_VWrite function to prevent this kind of inaccuracy.

## **AO VWrite**

### **Format**

status = AO\_VWrite (deviceNumber, chan, voltage)

### **Purpose**

Accepts a floating-point voltage value, scales it to the proper binary number, and writes that number to an analog output or current channel to change the output voltage or current.

#### **Parameters**

### Input

| Name         | Туре | Description                                   |  |
|--------------|------|-----------------------------------------------|--|
| deviceNumber | i16  | assigned by configuration utility             |  |
| chan         | i16  | analog output channel number                  |  |
| voltage      | f64  | floating-point value to be scaled and written |  |

#### Parameter Discussion

chan is the analog output channel number.

Range: 0 or 1 for the AO-2DC, Lab and 1200 Series analog output, and MIO devices.

0 through 5 for AT-AO-6.

0 through 9 for AT-AO-10. 0 through 49 for the VXI-AO-48XDC.

0 through 15 for the 6704 voltage channels.

16 through 31 for the 6704 current channels.

0 through 3 for the PCI-6711.

0 through 7 for the PCI-6713.

**voltage** is the floating-point value to be scaled and written to the analog output channel. The range of voltages depends on the type of device, on the jumpered output polarity, and on whether you apply an external voltage reference.

• Default ranges (bipolar, internal voltage reference):

MIO device (-10 to +10 V)

671*X* device (-10 to +10 V)

AT-AO-6/10 (-10 to +10 V)

Lab and 1200 Series analog output devices (-5 to +5 V)

VXI-AO-48XDC (-10.24 to +10.24 V)

• Default ranges (unipolar, internal voltage reference):

AO-2DC device (0 to +10 V)

If you set the output type to current by calling AO\_Change\_Parameter, the floating-point value indicates the current in amps, for an AO-2DC device, or milliamps for the VXI-AO-48XDC.

• Default ranges (unipolar, internal voltage reference):

AO-2DC device (0 to 0.02 A) VXI-AO-48XDC (0 to 20.47 mA)

• Default range for the 6704 devices:

Voltage channels (-10.24 to +10.24 V) Current channels (0 to 20.47 mA))

## **Using This Function**

AO\_VWrite scales **voltage** to a binary value and then writes that value to the DAC in the analog output channel. If the analog output channel is configured for immediate update, the output voltage or current changes immediately. Otherwise, the output voltage or current changes on a call to AO\_Update or the application of an external pulse.

If you have changed the output polarity for the analog output channel from the factory setting of bipolar to unipolar, you must call AO\_Configure with this information for AO\_VWrite to correctly scale the floating-point value to the binary value.

You also can use this function to calibrate the VXI-AO-48XDC. On this device, writes to channel number 48 affect the voltage or current offset calibration, depending on the output type of this channel as set by the AO\_Change\_Parameter function. In addition, writes to channel number 49 affect the voltage or current gain calibration, which also depends on the output type of the channel as set by the AO\_Change\_Parameter function.

## **AO** Write

### **Format**

status = AO\_Write (deviceNumber, chan, value)

## **Purpose**

Writes a binary value to one of the analog output channels, changing the voltage or current produced at the channel.

#### **Parameters**

### Input

| Name         | Туре | Description                       |  |
|--------------|------|-----------------------------------|--|
| deviceNumber | i16  | assigned by configuration utility |  |
| chan         | i16  | analog output channel number      |  |
| value        | i16  | digital value to be written       |  |

#### Parameter Discussion

chan is the analog output channel number.

Range: 0 or 1 for Lab and 1200 Series analog output and MIO devices.

0 through 5 for AT-AO-6.

0 through 9 for AT-AO-10.

0 through 47 for the VXI-AO-48XDC.

0 through 15 for the 6704 device voltage channels. 16 through 31 for the 6704 device current channels.

0 through 3 for the PCI-6711. 0 through 7 for the PCI-6713.

**value** is the digital value to be written to the analog output channel. **value** has several ranges, depending on whether the analog output channel is configured for unipolar or bipolar operations and on the analog output resolution of the device as shown in the following table.

| Device                  | Bipolar            | Unipolar     |
|-------------------------|--------------------|--------------|
| Most devices            | -2,048 to +2,047   | 0 to +4,095  |
| 16-bit E Series devices | -32,768 to +32,767 | 0 to +65,535 |
| 6704 devices            | 0 to +65,535       | 0 to +65,535 |

## **Using This Function**

AO\_Write writes **value** to the DAC in the analog output channel. If you configure the analog output channel for immediate update, which is the default setting, the output voltage or current changes immediately. Otherwise, the output voltage or current changes on a call to AO\_Update or the application of an external pulse.



**Note** Some inaccuracy results when you use AO\_Write on the VXI-AO-48XDC, because this device works with a larger analog output resolution than can be represented by the 16-bit value parameter. **value** represents the most significant 16 bits of the DAC to minimize this inaccuracy. Use the AO\_VWrite function to prevent this type of inaccuracy.

# Calibrate\_1200

### **Format**

status = Calibrate\_1200 (deviceNumber, calOP, saveNewCal, EEPROMloc, calRefChan, grndRefChan, DACOchan, DAC1chan, calRefVolts, gain)

## **Purpose**

Obtains a new, user-defined set of calibration constants.



**Note** Calling this function on an SCXI-1200 with remote SCXI might take an extremely long time. National Instruments strongly recommends that you switch your SCXI-1200 to use a parallel port connection before performing the calibration and store the calibration constants in one of the EEPROM storage locations.



**Caution** Read the calibration chapter in your device user manual before using Calibrate\_1200.

#### **Parameters**

### Input

| Name         | Туре | Description                                     |
|--------------|------|-------------------------------------------------|
| deviceNumber | i16  | assigned by configuration utility               |
| calOP        | i16  | operation to be performed                       |
| saveNewCal   | i16  | save new calibration constants                  |
| EEPROMloc    | i16  | storage location on EEPROM                      |
| calRefChan   | i16  | AI channel connected to the calibration voltage |
| grndRefChan  | i16  | AI channel that is grounded                     |
| DAC0chan     | i16  | AI channel connected to DAC0                    |
| DAC1chan     | i16  | AI channel connected to DAC1                    |
| calRefVolts  | f64  | DC calibration voltage                          |
| gain         | f64  | gain at which ADC is operating                  |

### **Parameter Discussion**

**calOP** determines the operation to be performed.

- 1: Load calibration constants from **EEPROMloc**. If **EEPROMloc** is 0, the default load table is used and NI-DAQ ensures that the constants loaded are appropriate for the current polarity settings. If **EEPROMloc** is any other value you must ensure that the polarity of your device matches those of the calibration constants.
- 2: Calibrate the ADC using DC reference voltage calRefVolts connected to calRefChan. To calibrate the ADC, you must ground one input channel (grndRefChan) and connect a voltage reference between any other channel and AGND (pin 11). After calibration, the calibration constants that were obtained during the process remain in use by the ADC until the device is initialized again.



**Note** The ADC must be in referenced single-ended mode for successful calibration of the ADC.

3: Calibrate the DACs. **DAC0chan** and **DAC1chan** are the analog input channels to which DAC0 and DAC1 are connected, respectively. To calibrate the DACs, you must wrap-back the DAC0 out (pin 10) and DAC1 out (pin 12) to any two analog input channels. After calibration, the calibration constants that were obtained during the process remain in use by the DACs until the device is initialized again.



**Note** The ADC must be in referenced single-ended and bipolar mode and fully calibrated (using **calOP** = 2) for successful calibration of the DACs.

- 4: Reserved.
- 5: Edit the default load table so that the set of constants in the area identified by **EEPROMloc** (1–6, 9 or 10) become the default calibration constants for the ADC. NI-DAQ changes either the unipolar or bipolar pointer in the default load table depending on the polarity those constants are intended for. The factory default for the ADC unipolar pointer is **EEPROMloc** = 9. The factory default for the ADC bipolar pointer is **EEPROMloc** = 10. You can specify any user area in **EEPROMloc** after you have run a calibration on the ADC and saved the calibration constants to that user area. Or, you can specify **EEPROMloc** = 9 or 10 to reset the default load table to the factory calibration for unipolar and bipolar mode respectively.
- 6: Edit the default load table so that the set of constants in the area identified by **EEPROMloc** (1–6, 9 or 10) become the default calibration constants for the DACs. NI-DAQ's behavior for **calOP** = 6 is identical to that for **calOP** = 5. Just substitute DAC everywhere you see ADC.

The following table summarizes the possible values of other parameters depending on the value of **calOP**.

| calOP | saveNewCal | EEPROMIoc    | calRefChan                                            | grndRefChan                                | DAC0chan                                    | DAC1chan                                    | calRefVolts                                | gain                       |
|-------|------------|--------------|-------------------------------------------------------|--------------------------------------------|---------------------------------------------|---------------------------------------------|--------------------------------------------|----------------------------|
| 1     | ignored    | 0–10         | ignored                                               | ignored                                    | ignored                                     | ignored                                     | ignored                                    | ignored                    |
| 2     | 0 or 1     | 1–6          | AI chan<br>connected<br>to voltage<br>source<br>(0-7) | AI chan<br>connected<br>to ground<br>(0–7) | ignored                                     | ignored                                     | the voltage<br>of the<br>voltage<br>source | 1, 2, 5, 10,<br>50, or 100 |
| 3     | 0 or 1     | 1–6          | ignored                                               | ignored                                    | AI chan<br>connected to<br>DAC0Out<br>(0-7) | AI chan<br>connected to<br>DAC1Out<br>(0-7) | ignored                                    | 1, 2, 5, 10,<br>50, or 100 |
| 5     | ignored    | 1–6,<br>9–10 | ignored                                               | ignored                                    | ignored                                     | ignored                                     | ignored                                    | ignored                    |
| 6     | ignored    | 1–6,<br>9–10 | ignored                                               | ignored                                    | ignored                                     | ignored                                     | ignored                                    | ignored                    |

Table 2-9. Possible Calibrate 1200 Parameter Values

#### **saveNewCal** is valid only when **calOP** is 2 or 3.

- 0: Do not save new calibration constants. Even though they are not permanently saved in the EEPROM, calibration constants created after a successful calibration remains in use by your device until your device is initialized again.
- 1: Save new calibration constants in **EEPROMloc** (1–6).

**EEPROMIoc** selects the storage location in the onboard EEPROM to be used. Different sets of calibration constants can be used to compensate for configuration or environmental changes.

- 0: Use the default load table (valid only if calOP = 1).
- 1: User calibration area 1.
- 2: User calibration area 2.
- 3: User calibration area 3.
- 4: User calibration area 4.
- 5: User calibration area 5.
- 6: User calibration area 6.
- 7: Invalid.
- 8: Invalid.

- 9: Factory calibration area for unipolar (write protected).
- 10: Factory calibration area for bipolar (write protected).

Notice that the user cannot write into **EEPROMloc** 9 and 10.

**calRefChan** is the analog input channel connected to the calibration voltage of **calRefVolts** when **calOP** is 2.

Range: 0 through 7.

**grndRefChan** is the analog input channel connected to ground when **calOP** is 2.

Range: 0 through 7.

**DACOchan** is the analog input channel connected to DACO when **calOP** is 3.

Range: 0 through 7.

**DAC1chan** is the analog input channel connected to DAC1 when **calOP** is 3.

Range: 0 through 7.

**calRefVolts** is the value of the DC calibration voltage connected to **calRefChan** when calOP = 2.



**Note** If you are calibrating at a gain other than 1, make sure you apply a voltage so that **calRefVolts** \* **gain** is within the upper limits of the analog input range of the device.

gain is the device gain setting at which you want to calibrate when calOP is 2 or 3. When you perform an analog input operation, a calibration constant for that gain must be available. When you run the Calibrate\_1200 function at a particular gain, the device can be used only to collect data accurately at that gain. If you are creating a set of calibration constants that you intend to use, you must be sure to calibrate at all gains at which you intend to sample.

Range: 1, 2, 5, 10, 50, or 100.

## **Using This Function**

The 1200 and 1200AI devices come fully equipped with accurate factory calibration constants. However, if you feel that the device is not performing either analog input or output accurately and suspect the device calibration to be in error, you can use Calibrate\_1200 to obtain a user-defined set of new calibration constants.

A complete set of calibration constants consists of ADC constants for all gains at one polarity plus DAC constants for both DACs, again at the same polarity setting. It is important to understand the polarity rules. When a set of calibration constants is created, the polarity your device was in must match the polarity your device is in when those calibration constants are used. For example, calibration constants created when your ADC is in unipolar must be used for data acquisition when your ADC is also in unipolar only.

You can store up to six sets of user-defined calibration constants. These are stored in the EEPROM on your device in *user-calibration areas*. Refer to your hardware user manual for more information on these calibration areas. You also can use the calibration constants created at the factory at any time. These are stored in write protected factory calibration areas in the EEPROM. There are two of these. One holds constants for bipolar operation and the other for unipolar. One additional area in the EEPROM, the default load table, is important to calibration. This table contains four pointers to sets of calibration constants; one pointer each for ADC unipolar constants, ADC bipolar constants, DAC unipolar and DAC bipolar. NI-DAQ uses this table for calibration constant loading.

It is also important to understand the calibration constant loading rules. The first time a function requiring use of the ADC or DAC is called in an application, NI-DAQ automatically loads a set of calibration constants. At that time, the polarities of your ADC and DACs are examined and the appropriate pointers in the default load table are used. The calibration constant loading is done after the DLL is loaded. If your DLL is ever unloaded and then reloaded again, the calibration constant is also loaded again.

A calibration performed in bipolar mode is not valid for unipolar and vice versa. Calibrate\_1200 performs a bipolar or unipolar calibration, or loads the bipolar or unipolar constants (calOP=1, EEPROMloc=0), depending on the value of the polarity parameter in the last call to AI\_Configure and AO\_Configure. If analog input measurements are taken with the wrong set of calibration constants loaded, you might produce erroneous data.

Calibrate for a particular gain if you plan to acquire at that gain. If you calibrate the device yourself make sure you calibrate at a gain that you are likely to use. Each gain has a different calibration constant. When you switch gains, NI-DAQ automatically loads the calibration constant for that particular gain. If you have not calibrated for that gain and saved the constant earlier, an incorrect value is used.

To set up your own calibration constants in the user area for both unipolar and bipolar configurations, you need to complete the following steps:

- 1. Create and store both unipolar and bipolar ADC calibration constants.
- 2. Modify the default load table so that NI-DAQ automatically loads your constants instead of the factory constants.

## Example

**Unipolar calibration**—Change the polarity of your device to unipolar (by using the AI\_Configure call or use Measurement & Automation Explorer, in Windows). Call Calibrate\_1200 to perform an ADC calibration, as in the following example:

```
status = Calibrate_1200 (deviceNumber, 2, 1, EEPROMloc, calRefChan,
grndRefChan, 0, 0, calRefVolts, gain)
```

where you specify **deviceNumber**, **EEPROMloc** (say 1, for example), **calRefChan**, **grndRefChan**, **calRefVolts**, and **gain**.

Next call this function again; for example:

```
status = Calibrate_1200 (deviceNumber, 5, 0, EEPROMloc, 0, 0, 0,
0, 0)
```

where the **deviceNumber** and **EEPROMloc** are the same as in the first function call.

NI-DAQ automatically modifies the ADC unipolar pointer in the default load table to point to user area 1.

**Bipolar calibration**—Change the polarity of your device to bipolar. Call Calibrate\_1200 to perform another ADC calibration (**calOP** = 2) with **saveNewCal** = 1 (save) and **EEPROMloc** set to a different user area (say, 2) as shown above. Next, call the function with **calOP** = 5 and **EEPROMloc** = 2 as shown above. NI-DAQ automatically modifies the ADC bipolar pointer in the default load table to point to user area 2. At this point, you have set up user area 1 to be your default load area when you operate the device in unipolar mode and user area 2 to be your default load area when you operate the device in bipolar mode. NI-DAQ automatically handles the loading of the appropriate constants.

Failed calibrations leave your device in an incorrectly calibrated state. If you run this function with  $\mathbf{calOp} = 2$  or 3 and receive an error, you must reload a valid set of calibration constants. If you have a valid set of user defined constants in one of the user areas, you can load them. Otherwise, reload the factory constants.



**Note** If you are using remote SCXI, the time this function might take depends on the baud rate settings, where slower baud rates causes this function to take longer. You also might want to call Timeout\_Config to set the timeout limit for your device to a longer value, if you do obtain a timeoutError from this function.

# Calibrate DSA

### **Format**

status = Calibrate\_DSA (deviceNumber, operation, refVoltage)

## **Purpose**

Use this function to calibrate your DSA device.

#### **Parameters**

### Input

| Name         | Туре | Description                       |  |
|--------------|------|-----------------------------------|--|
| deviceNumber | i16  | assigned by configuration utility |  |
| operation    | u32  | operation to be performed         |  |
| refVoltage   | f64  | DC calibration voltage            |  |

### **Parameter Discussion**

The legal range for operation is given in terms of constants defined in a header file. The header file you should use depends on the language you are using:

- C programmers—NIDAQCNS.H (DATAACQ.H for LabWindows/CVI)
- BASIC programmers—NIDAQCNS.INC (Visual Basic for Windows programmers should refer to the *Programming Language Considerations* section in Chapter 1, *Using the NI-DAQ Functions*, for more information).
- Pascal programmers—NIDAQCNS.PAS

**operation** determines the operation to be performed.

#### Range:

ND\_SELF\_CALIBRATE—Self-calibrates the device.

ND\_EXTERNAL\_CALIBRATE—Externally calibrates the device.

ND\_RESTORE\_FACTORY\_CALIBRATION—Calibrates the device using an internal factory reference.

**refVoltage** is the value of the DC calibration voltage connected to analog input channel 0 when operation is ND\_EXTERNAL\_CALIBRATE. This parameter is ignored when operation is set to ND\_EXTERNAL\_CALIBRATE or ND\_RESTORE\_FACTORY\_CALIBRATION.

Range: +1.0 to +9.99 V.

To achieve the highest accuracy, use a reference voltage between +5.0 and +9.99 V.

## **Using This Function**

Your device contains calibration D/A converters (calDACs) that are used for fine-tuning the analog circuitry. The calDACs must be programmed (loaded) with calibration constants. These constants are stored in nonvolatile memory (EEPROM) on your device. To achieve specification accuracy, you should perform an internal calibration of your device just before a measurement session but after your computer and the device have been powered on and allowed to warm up for at least 15 minutes. Frequent calibration produces the most stable and repeatable measurement performance.

Chapter 2

Before the device is shipped from the factory, an external calibration is performed and the EEPROM contains calibration constants that NI-DAQ automatically loads into the calDACs as needed. The value of the onboard reference voltage is also stored in the EEPROM, and this value is used when you subsequently perform a self-calibration. The calibration constants are recalculated and stored in the EEPROM when a self-calibration is performed. When you perform an external calibration, NI-DAQ recalculates the value of the onboard reference voltage and then performs a self-calibration. This new onboard reference value is used for all subsequent self-calibration operations. If a mistake is made when performing an external calibration, you can restore the board's factory calibration so that the board is not unusable.

## **Performing Self-Calibration of the Board**

Set **operation** to ND\_SELF\_CALIBRATE to perform self-calibration of your device.

## Example

You want to perform self-calibration of your device and you want to store the new set of calibration constants in the EEPROM. You should make the following call:

```
Calibrate_DSA (deviceNumber, ND_SELF_CALIBRATE, 0.0)
```

## **Performing External Calibration of the Board**

Set **operation** to ND\_EXTERNAL\_CALIBRATE to externally calibrate your device. The value of the internal reference voltage will be recalculated and the board will be self-calibrated using the new reference value.

Before calling the Calibrate\_DSA function, connect the output of your reference voltage to analog input channel 0.

## **Example**

You want to externally calibrate your device using an external reference voltage source with a precise 7.0500 V reference, and you want to store the new set of calibration constants in the EEPROM. You should make the following call:

```
Calibrate DSA (deviceNumber, ND EXTERNAL CALIBRATE, 7.0500)
```

## **Restoring Factory Calibration**

To restore the factory value of the internal reference voltage after an external calibration, set **operation** to ND\_RESTORE\_FACTORY\_CALIBRATION. You might want to do so if you made a mistake while performing the external calibration, or if you did not want to perform the external calibration at all.

# Calibrate E Series

### **Format**

status = Calibrate\_E\_Series (deviceNumber, calOP, setOfCalConst, calRefVolts)

## **Purpose**

Use this function to calibrate your E Series or 671*X* device and to select a set of calibration constants to be used by NI-DAQ.



**Caution** Read the calibration chapter in your device user manual before using Calibrate E\_Series.



**Note** (PCI-6110, revisions D and earlier only). You should fully disconnect your cable from your board before performing a self-calibration, because external signals can cause noise in the board and prevent it from properly converging to a specific calibration level.



**Note** Analog output channels and the AO and WFM functions do not apply to the AI E Series devices.

### **Parameters**

### Input

| Name          | Туре | Description                                                |
|---------------|------|------------------------------------------------------------|
| deviceNumber  | i16  | assigned by configuration utility                          |
| calOP         | u32  | operation to be performed                                  |
| setOfCalConst | u32  | set of calibration constants or the EEPROM location to use |
| calRefVolts   | f64  | DC calibration voltage                                     |

### **Parameter Discussion**

The legal ranges for the **calOp** and **setOfCalConst** parameters are given in terms of constants that are defined in the header file. The header file you should use depends on which of the following languages you are using:

- C programmers—NIDAQCNS.H (DATAACQ.H for LabWindows/CVI)
- BASIC programmers—NIDAQCNS.INC
- Pascal programmers—NIDAQCNS.PAS

**calOP** determines the operation to be performed.

Range:

ND\_SET\_DEFAULT\_LOAD\_AREA—Make **setOfCalConst** the default load area; do not perform calibration.

ND\_SELF\_CALIBRATE—Self-calibrates the device.

ND\_EXTERNAL\_CALIBRATE—Externally calibrates the device.

**setOfCalConst** selects the set of calibration constants to be used by NI-DAQ. These calibration constants reside in the onboard EEPROM or are maintained by NI-DAQ. Range:

ND\_FACTORY\_EEPROM\_AREA: Factory calibration area of the EEPROM. You cannot

modify this area, so you can set **setOfCalConst** to ND\_FACTORY\_EEPROM\_AREA only when **calOP** is set

to ND\_SET\_DEFAULT\_LOAD\_AREA.

ND\_NI\_DAQ\_SW\_AREA: NI-DAQ maintains calibration constants internally; no

writing into the EEPROM occurs. You cannot use this

setting when **calOP** is set to

ND\_SET\_DEFAULT\_LOAD\_AREA. You can use this setting to calibrate your device repeatedly during your program, and you do not want to store the calibration

constants in the EEPROM.

ND\_USER\_EEPROM\_AREA: For the user calibration area of the EEPROM. If **calOP** 

is set to ND\_SELF\_CALIBRATE or

ND\_EXTERNAL\_CALIBRATE, the new calibration constants are written into this area, and this area becomes the new default load area. You can use this setting to run several NI-DAQ applications during one measurement session conducted at same temperature, and you do not want to recalibrate your device in each application.

**calRefVolts** is the value of the DC calibration voltage connected to analog input channel 0 when **calOP** is ND\_EXTERNAL\_CALIBRATE. This parameter is ignored when **calOP** is ND\_SET\_DEFAULT\_LOAD\_AREA or ND\_SELF\_CALIBRATE. Range:

12-bit E Series and 671X devices: +6.0 to +10.0 V

16-bit E Series devices: +6.0 to +9.999 V

## **Using This Function**

Your device contains calibration D/A converters (calDACs) that are used for fine-tuning the analog circuitry. The calDACs must be programmed (loaded) with certain numbers called calibration constants. Those constants are stored in non-volatile memory (EEPROM) on your device or are maintained by NI-DAQ. To achieve specification accuracy, you should perform an internal calibration of your device just before a measurement session but after your computer and the device have been powered on and allowed to warm up for at least

15 minutes. Frequent calibration produces the most stable and repeatable measurement performance. The device is not affected negatively if you recalibrate it as often as you want.

Two sets of calibration constants can reside in two *load areas* inside the EEPROM; one set is programmed at the factory, and the other is left for the user. One load area in the EEPROM corresponds to one set of constants. The load area NI-DAQ uses for loading calDACs with calibration constants is called the default load area. When you get the device from the factory, the default load area is the area that contains the calibration constants obtained by calibrating the device in the factory. NI-DAQ automatically loads the relevant calibration constants stored in the load area the first time you call a function (an AI, AO, DAQ, SCAN and WFM function) that requires them. NI-DAQ also automatically reloads calibration constants whenever appropriate; see the *Calibration Constant Loading by NI-DAQ* section later in this function for details. When you call the Calibrate\_E\_Series function with **setOfCalConst** set to ND\_NI\_DAQ\_SW\_AREA, NI-DAQ uses a set of constants it maintains in a load area that does not reside inside the EEPROM.



**Note** Calibration of your MIO or AI device takes some time. Do not be alarmed if the Calibrate\_E\_Series function takes several seconds to execute. In addition, after powering on your computer, you should wait for some time (typically 15 minutes) for the entire system to warm up before performing the calibration. You should allow the same warm-up time before any measurement session that will take advantage of the calibration constants determined by using the Calibrate\_E\_Series function.



**Caution** When you call the Calibrate\_E\_Series function with **calOP** set to ND\_SELF\_CALIBRATE or ND\_EXTERNAL\_CALIBRATE, NI-DAQ aborts any ongoing operations the device is performing and set all configurations to defaults. Therefore, National Instruments recommends that you call Calibrate\_E\_Series before calling other NI-DAQ functions or when no other operations are going on.

Explanations about using this function for different purposes (with different values of **calOP**) are given in the following sections.

## **Changing the Default Load Area**

Set **calOP** to ND\_SET\_DEFAULT\_LOAD\_AREA to change the area used for calibration constant loading. The storage location selected by **setOfCalConst** becomes the new default load area.

## **Example**

You want to make the factory area of the EEPROM default load area. You should make the following call:

Calibrate\_E\_Series(deviceNumber, ND\_SET\_DEFAULT\_LOAD\_AREA,
ND\_FACTORY\_EEPROM\_AREA, 0.0)

### **Performing Self-Calibration of the Device**

Set **calOP** to ND\_SELF\_CALIBRATE to perform self-calibration of your device. The storage location selected by **setOfCalConst** becomes the new default load area.

## **Example**

You want to perform self-calibration of your device and you want to store the new set of calibration constants in the user area of the EEPROM. You should make the following call:

```
Calibrate_E_Series(deviceNumber, ND_SELF_CALIBRATE,
ND_USER_EEPROM_AREA, 0.0)
```

The EEPROM user area becomes the default load area.

## **Performing External Calibration of the Device**

Set **calOP** to ND\_EXTERNAL\_CALIBRATE to perform external calibration of your device. The storage location selected by **setOfCalConst** becomes the new default load area.

Make the following connections before calling the Calibrate\_E\_Series function:

| 12-Bit E Series Devices                                                                                                                                                                                                                                                                                                  | 16-Bit E Series Devices                                                                                                                                                                                                                                                                                                                                                           |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Connect the positive output of your reference voltage source to the analog input channel 8.                                                                                                                                                                                                                              | Connect the positive output of your reference voltage source to analog input channel 0.                                                                                                                                                                                                                                                                                           |  |  |
| 2. Connect the negative output of your reference voltage source to the AISENSE line.                                                                                                                                                                                                                                     | 2. Connect the negative output of your reference voltage source to analog input channel 8.                                                                                                                                                                                                                                                                                        |  |  |
| <ul> <li>3. Connect the DAC0 line (analog output channel 0) to analog input channel 0.</li> <li>4. If your reference voltage source and your computer are floating with respect to each other, connect the AISENSE line to the AIGND line as well as to the negative output of your reference voltage source.</li> </ul> | Note: By performing these first two connections, you supply the reference voltage to analog input channel 0, which is configured for differential operation.  3. If your reference voltage source and your computer are floating with respect to each other, connect the negative output of your reference voltage source to the AIGND line as well as to analog input channel 8. |  |  |



**Note** For PCI-6034E/6035E devices, use the connections for 12-bit E Series devices.

For 611X or 671X devices, make the following connections before calling the Calibrate E\_Series function:

| 611X Devices                                                                                                  | 671X Devices                                                                                  |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Connect the positive output of your reference voltage source to the analog input channel 0 positive input.    | Connect the positive output of your reference voltage source to the external reference input. |
| 2. Connect the negative output of your reference voltage source to the analog input channel 0 negative input. | Connect the negative output of your reference voltage source to analog output ground.         |

## **Example**

You want to perform an external calibration of your device using an external reference voltage source with a precise 7.0500 V reference, and you want NI-DAQ to maintain a new set of calibration constants without storing them in the EEPROM. You should make the following call:

```
Calibrate_E_Series(deviceNumber, ND_EXTERNAL_CALIBRATE,
ND_NI_DAQ_SW_AREA, 7.0500)
```

The internal NI-DAQ area will become the default load area, and the calibration constants will be lost when your application ends.

## Calibration Constant Loading by NI-DAQ

NI-DAQ automatically loads calibration constants into calDACs whenever you call functions that depend on them (AI, AO, DAQ, SCAN, and WFM functions). The following conditions apply:

#### 12-Bit E Series Devices **16-Bit E Series Devices** The same set of constants is correct for Calibration constants required by the both polarities of analog input. 16-bit E Series devices for unipolar analog input channels are different from One set of constants is valid for unipolar, those for bipolar analog input channels. and another set is valid for bipolar If you are acquiring data from one configuration of the analog output channel, or if all of the channels you are channels. When you change the polarity acquiring data from are configured for of an analog output channel, NI-DAQ the same polarity, NI-DAQ selects the reloads the calibration constants for that appropriate set of calibration constants channel. for you. If you are scanning several channels, and you mix channels configured for unipolar and bipolar mode in your scan list, NI-DAQ loads the calibration constants appropriate for the polarity that analog input channel 0 is configured for. Analog output channels on the AT-MIO-16XE-50 can be configured for bipolar operation only. Therefore, NI-DAQ always uses the same constants for the analog output channels.

# Calibrate TIO

### **Format**

status = Calibrate\_TIO (deviceNumber, operation, setOfCalConst, referenceFreq)

## **Purpose**

Use this function to calibrate your 6608 device and to select a set of calibration constants to be used by NI-DAQ.

### **Parameters**

### Input

| Name          | Туре | Description                                                                 |
|---------------|------|-----------------------------------------------------------------------------|
| deviceNumber  | i16  | assigned by configuration utility                                           |
| operation     | u32  | operation to be performed                                                   |
| setOfCalConst | u32  | set of calibration constants or the EEPROM location to use                  |
| referenceFreq | f64  | frequency of the external reference signal connected to the device in hertz |

# **Parameter Discussion**

The legal ranges for the **operation** and **setOfCalConst** parameters are given in terms of constants that are defined in the header file. The header file you should use depends on which of the following languages you are using:

- C programmers—NIDAQCNS.H (DATAACQ.H for LabWindows/CVI)
- BASIC programmers—NIDAQCNS.INC
- Pascal programmers—NIDAQCNS.PAS

**operation** determines the operation to be performed.

#### Range:

ND\_EXTERNAL\_CALIBRATE

Externally calibrates the device.

ND\_SET\_DEFAULT\_LOAD\_AREA

Makes setOfCalConst the default load area; do not

perform calibration.

**setOfCalConst** selects the set of calibration constants to be used by NI-DAQ. These calibration constants reside in the onboard EEPROM or are maintained by NI-DAQ. Range:

ND\_FACTORY\_EEPROM\_AREA: Factory calibration area of the EEPROM. You cannot

modify this area, so you can set **setOfCalConst** to ND FACTORY EEPROM AREA only when **operation** is

set to ND\_SET\_DEFAULT\_LOAD\_AREA.

ND\_USER\_EEPROM\_AREA: User calibration area of the EEPROM. If **operation** is set

to ND\_EXTERNAL\_CALIBRATE, the new calibration constants are written into this area, and this area becomes

the new default load area.

ND\_NI\_DAQ\_SW\_AREA: NI-DAQ maintains calibration constants internally; no

writing into the EEPROM occurs. You cannot use this

setting when **operation** is set to ND\_SET\_DEFAULT\_LOAD\_AREA.

## **Using This Function**

Your device contains calibration D/A converters (calDACs) that are used for fine-tuning the frequency of the stable, oven-controlled crystal oscillator (OCXO). The calDACs must be programmed (loaded) with certain numbers called calibration constants. Those constants are stored in non-volatile memory (EEPROM) on your device or are maintained by NI-DAQ.

Two sets of calibration constants can reside in two *load areas* inside the EEPROM; one set (ND\_FACTORY\_EEPROM\_AREA) is programmed at the factory, and the other (ND\_USER\_EEPROM\_AREA) is left for the user. Each load area in the EEPROM corresponds to one set of constants. The load area NI-DAQ uses for loading calDACs with calibration constants is called the default load area. When you get the device from the factory, the default load area is set to ND\_FACTORY\_EEPROM\_AREA. NI-DAQ automatically loads the relevant calibration constants stored in the load area when the device is first initialized. When you call the Calibrate\_TIO function with **setOfCalConst** set to ND\_NI\_DAQ\_SW\_AREA, NI-DAQ writes the new calibration constants to the calDACs but does not store the new constants in the EEPROM.



**Caution** Using Calibrate\_TIO aborts any ongoing operations the device is performing and sets all configurations to defaults.

**Caution** To calibrate your device, you need an external clock with a short-term stability (over a period of 100 s) of better than  $5 \times 10^{-11}$ . You may use a suitable Rubidium frequency standard or send your device to a calibration house for calibration. Using a clock that does not have the required frequency stability causes improper calibration of the high-stability clock which can result in inaccurate measurements.

Chapter 2

## **Performing External Calibration of the Board**

Set **operation** to ND\_EXTERNAL\_CALIBRATE to perform external calibration of your device. The storage location selected by **setOfCalConst** becomes the new default load area.

Before calling the Calibrate\_TIO function, connect the output of your reference frequency source to the source pin of counter 0.

#### Example

You want to calibrate your device using a reference frequency source with a precise output of 10.000000000 MHz, and you want to store the new set of calibration constants in the user EEPROM area and make it the default load area. You should make the following call:

```
Calibrate_TIO (deviceNumber, ND_EXTERNAL_CALIBRATE,
ND_USER_EEPROM_AREA, 10000000.000)
```

## **Restoring Factory Calibration**

To restore the factory settings, set **operation** to ND\_SET\_DEFAULT\_LOAD\_AREA and **setOfCalConst** to ND\_FACTORY\_EEPROM\_AREA. You might want to do this if you made a mistake while performing the external calibration.

## **Changing the Default Load Area**

Set **operation** to ND\_SET\_DEFAULT\_LOAD\_AREA to change the default area used for calibration constant loading. The storage location selected by **setOfCalConst** becomes the new default load area and the calDACs are loaded with the values from the new location. You cannot set the default load area to be ND\_NI\_DAQ\_SW\_AREA. The **referenceFreq** parameter is ignored in this operation.

### Example

You want to make the user area of the EEPROM default load area. You should make the following call:

```
Calibrate_TIO (deviceNumber, ND_SET_DEFAULT_LOAD_AREA,
ND_USER_EEPROM_AREA, 0.0)
```

# Config\_Alarm\_Deadband

### **Format**

## **Purpose**

Notifies NI-DAQ applications when analog input signals meet the alarm-on or alarm-off condition you specified. Also, NI-DAQ sends your application a message or executes a callback function that you provide.

### **Parameters**

## Input

| Name            | Type | Description                              |  |
|-----------------|------|------------------------------------------|--|
| deviceNumber    | i16  | assigned by configuration utility        |  |
| mode            | i16  | add or remove high/low alarm events      |  |
| chanStr         | STR  | channel string                           |  |
| trigLevel       | f64  | trigger level in volts                   |  |
| deadbandWidth   | f64  | the width of the alarm deadband in volts |  |
| handle          | i16  | handle                                   |  |
| alarmOnMessage  | i16  | user-defined alarm-on message            |  |
| alarmOffMessage | i16  | user-defined alarm-off message           |  |
| callbackAddr    | u32  | user callback function address           |  |

### **Parameter Discussion**

**mode** indicates whether to add a new alarm message or remove an old alarm message with the given device.

- 0: Add a high alarm deadband event.
- 1: Add a low alarm deadband event.
- 2: Remove a high alarm deadband event.
- 3: Remove a low alarm deadband event.

**chanStr** is a string description of the trigger analog channel or digital port.

хn

SCn!MDn!CHn

AMn!n

#### where

x: AI for analog input channel.

n: Analog channel, digital port, SCXI chassis, SCXI module number,

Chapter 2

or AMUX-64T device number or channel number.

SC: Keyword stands for SCXI chassis.

MD: Keyword stands for SCXI module.

CH: Keyword stands for SCXI channel.

AM: Keyword stands for AMUX-64T device.

!: Delimiter.

For example, the following string specifies onboard analog input channel 5 as the trigger channel:

AI5

The following string specifies SCXI channel 1 in SCXI module 2 of SCXI chassis 4 as the trigger channel:

SC4!MD2!CH1

The following specifies AMUX channel 34 on the AMUX-64T device 1 as the trigger channel:

AM1!34

You also can specify more than one channel as the trigger channel by listing all the channels when specifying the channel number. For example, the following string specifies onboard analog input channel 2, 4, 6, and 8 as the trigger channels:

AI2, AI4, AI6, AI8

Also, if your channel numbers are consecutive, you can use the following shortcut to specify onboard analog input channels 2 through 8 as trigger channels:

AI2:8

**trigLevel** is the alarm limit in volts. **trigLevel** and **deadbandWidth** determine the trigger condition.

deadbandWidth specifies, in volts, the hysteresis window for triggering.

**handle** is the handle to the window you want to receive a Windows message in when **DAQEvent** happens. See Config\_DAQ\_Event\_Message for restrictions on this parameter.

**alarmOnMessage** and **alarmOffMessage** are messages you define. When the alarm-on condition occurs, NI-DAQ passes **alarmOnMessage** back to you. Similarly, when the alarm-off condition occurs, NI-DAQ passes **alarmOffMessage** back to you. The messages can be any value.

In Windows, you can set the message to a value including any Windows predefined messages such as WM\_PAINT. However, to define your own message, you can use any value ranging from WM\_USER (0x400) to 0x7fff. This range is reserved by Microsoft for messages you define.

**callbackAddr** is the address of the user callback function. NI-DAQ calls this function when **DAQEvent** occurs. See Config\_DAQ\_Event\_Message for restrictions on this parameter.

## **Using This Function**

To meet the high alarm-on condition, the input signal must first go below (trigLevel – deadbandWidth/2) volts and then go above (trigLevel + deadbandWidth/2) volts. On the other hand, to meet the high alarm-off condition, the input signal must first go above (trigLevel + deadbandWidth/2) volts and then go below (trigLevel – deadbandWidth/2) volts. See Figure 2-1 for an illustration of the high alarm condition.

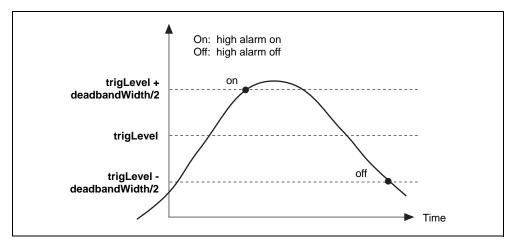
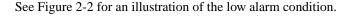




Figure 2-1. High Alarm Deadband

The low alarm deadband trigger condition is the opposite of the high alarm deadband trigger condition. To meet the low alarm-on condition, the input signal must first go above (trigLevel + deadbandWidth/2) and then go below (trigLevel - deadbandWidth/2). On the other hand, to meet the low alarm-off condition, the input signal must first go below (trigLevel - deadbandWidth/2) and then go above (trigLevel + deadbandWidth/2).



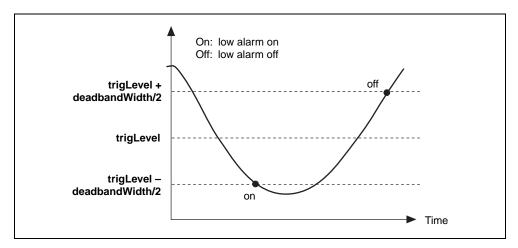



Figure 2-2. Low Alarm Deadband

Config\_Alarm\_Deadband is a high-level function for NI-DAQ event messaging. Because this function uses the current **inputRange** and **polarity** settings to translate **triglevel** and **deadbandWidth** from volts to binary, you should not call AI\_Configure and change these settings after you have called Config\_Alarm\_Deadband. For more information on NI-DAQ event messaging, see the low-level function Config\_DAQ\_Event\_Message. When you are using this function, the analog input data acquisition must be run with interrupts only (programmed I/O mode). You cannot use DMA. See Set\_DAQ\_Device\_Info for how to change modes.

# Config\_ATrig\_Event\_Message

### **Format**

status = Config\_ATrig\_Event\_Message (deviceNumber, mode, chanStr, trigLevel, windowSize, trigSlope, trigSkipCount, pretrigScans, postTrigScans, handle, message, callbackAddr)

## **Purpose**

Notifies NI-DAQ applications when the trigger channel signal meets certain criteria you specify. NI-DAQ sends your application a message or executes a callback function that you provide.

#### **Parameters**

## Input

| Name          | Туре | Description                                  |  |
|---------------|------|----------------------------------------------|--|
| deviceNumber  | i16  | assigned by configuration utility            |  |
| mode          | i16  | add or remove a message                      |  |
| chanStr       | STR  | channel string                               |  |
| trigLevel     | f64  | trigger level in volts                       |  |
| windowSize    | f64  | hysteresis window size in volts              |  |
| triggerSlope  | i16  | trigger slope                                |  |
| trigSkipCount | u32  | number of triggers                           |  |
| preTrigScans  | u32  | number of scans to skip before trigger event |  |
| postTrigScans | u32  | number of scans after trigger event          |  |
| handle        | i16  | handle                                       |  |
| message       | i16  | user-defined message                         |  |
| callbackAddr  | u32  | user callback function address               |  |

#### **Parameter Discussion**

**mode** indicates whether to add a new alarm message or to remove an old alarm message with the given device.

- 0: Remove an existing analog trigger event.
- 1: Add a new analog trigger event.

**chanStr** is a string description of the trigger analog channel or digital port.

The channel string has one of the following formats:

хn

SCn!MDn!CHn

AMn!n

#### where

x: AI for analog input channel.

*n*: Analog channel, digital port, SCXI chassis, SCXI module number, or AMUX-64T device number or channel number.

SC: Keyword stands for SCXI chassis.

MD: Keyword stands for SCXI module.

CH: Keyword stands for SCXI channel.

AM: Keyword stands for AMUX-64T device.

!: Delimiter.

For example, the following string specifies an onboard analog input channel 5 as the trigger channel:

AI5

The following string specifies SCXI channel 1 in SCXI module 2 of SCXI chassis 4 as the trigger channel:

SC4!MD2!CH1

The following specifies AMUX channel 34 on the AMUX-64T device 1 as the trigger channel:

AM1!34

You also can specify more than one channel as the trigger channel by listing all the channels when specifying channel number. For example, the following string specifies onboard analog input channel 2, 4, 6, and 8 as the trigger channels:

AI2, AI4, AI6, AI8

Also, if your channel numbers are consecutive, you can use the following shortcut to specify onboard analog input channels 2 through 8 as trigger channels:

AI2:8

**trigLevel** is the alarm limit in volts. **trigLevel** and **windowSize** determine the trigger condition.

windowSize is the number of volts below **trigLevel** for positive slope or above the analog trigger level for negative slope that the input signal must go before NI-DAQ recognizes a valid trigger crossing at the analog trigger level.

**trigSlope** is the slope the input signal should trigger on.

- 0: Trigger on either positive and negative slope.
- 1: Trigger on positive slope.
- Trigger on negative slope.

**trigSkipCount** is the number of valid triggers NI-DAQ ignores. It can be any value greater than or equal to zero. For example, if **trigSkipCount** is 3, you are notified when the fourth trigger occurs.

**preTrigScans** is the number of scans of data NI-DAQ collects before looking for the very first trigger. Setting **preTrigScans** to 0 causes NI-DAQ to look for the first trigger as soon as the DAQ process begins.

**postTrigScans** is the number of scans of data NI-DAQ collects after the **trigSkipCount** triggers before notifying you.

handle is the handle to the window you want to receive a Windows message in when **DAQEvent** happens. See Config\_DAQ\_Event\_Message for restrictions on this parameter.

**message** is a message you define. When **DAQEvent** happens, NI-DAQ passes **message** back to you. **message** can be any value.

In Windows, you can set **message** to a value including any Windows predefined messages (such as WM\_PAINT). However, to define your own message, you can use any value ranging from WM\_USER (0x400) to 0x7fff. This range is reserved by Microsoft for messages you define.

**callbackAddr** is the address of the user callback function. NI-DAQ calls this function when **DAQEvent** occurs. See Config\_DAQ\_Event\_Message for restrictions on this parameter.

# **Using This Function**

To meet the positive trigger condition, the input signal must first go below (**trigLevel** – **windowSize**) and then go above **trigLevel**. On the other hand, to meet the negative trigger condition, the input signal must first go above (**trigLevel** + **windowSize**) and then go below **trigLevel**. Figure 2-3 shows these conditions.

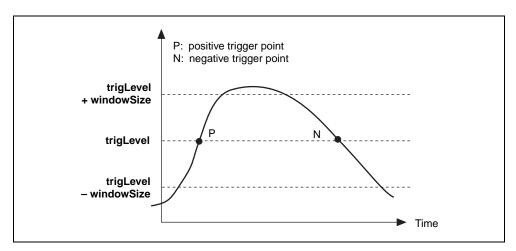



Figure 2-3. Analog Trigger Event

Config\_ATrig\_Event\_Message is a high-level function for NI-DAQ event messaging. Because this function uses the current **inputRange** and **polarity** settings to translate **trigLevel** and **windowSize** into binary units, you should not call AI\_Configure and change these settings after you have called Config\_ATrig\_Event\_Message. For more information on NI-DAQ event messaging, see the low-level function Config\_DAQ\_Event\_Message.

# Config\_DAQ\_Event\_Message

### **Format**

## **Purpose**

Notifies NI-DAQ applications when the status of an asynchronous DAQ operation (initiated by a call to DAQ\_Start, DIG\_Block\_Out, WFM\_Group\_Control, and so on) meets certain criteria you specify. Notification is done through the Windows PostMessage API and/or a callback function.

Certain **DAQEvent** options are best suited for low-speed transfers, because they require the processor to examine each data point as it is acquired or transferred. These options include **DAQEvents** 3 through 9. For these options, you cannot use DMA, and the processor has to do more work. The processing burden increases in direct proportion to the speed of the asynchronous operation.

### **Parameters**

### Input

| Name          | Туре | Description                          |  |
|---------------|------|--------------------------------------|--|
| deviceNumber  | i16  | assigned by configuration utility    |  |
| mode          | i16  | add or remove a message              |  |
| chanStr       | STR  | channel string                       |  |
| DAQEvent      | i16  | event criteria                       |  |
| DAQTrigVal0   | i32  | general-purpose trigger value        |  |
| DAQTrigVal1   | i32  | general-purpose trigger value        |  |
| trigSkipCount | u32  | number of triggers to skip           |  |
| preTrigScans  | u32  | number of scans before trigger event |  |
| postTrigScans | u32  | number of scans after trigger event  |  |
| handle        | i16  | handle                               |  |
| message       | i16  | user-defined message                 |  |
| callbackAddr  | u32  | user callback function address       |  |

### **Parameter Discussion**

**mode** indicates whether to add a new message, remove an old message, or clear all messages associated with the given device.

- O: Clear all messages associated with the device including messages configured with Config\_Alarm\_Deadband and Config\_ATrig\_Event\_Message.
- 1: Add a new message.
- 2: Remove an existing message.

**chanStr** is a string description of the trigger analog channel(s) or digital port(s).

The channel string has one of the following formats:

хn

SCn!MDn!CHn

AMn!n

#### where

x: AI for analog input channel.

AO for analog output channel.

DI for digital input channel.

DO for digital output channel.

CTR for counter.

EXT for external timing input.

n: Analog channel, digital port, counter, SCXI chassis, SCXI module number, or AMUX-64T device number

SC: Keyword stands for SCXI chassis.

MD: Keyword stands for SCXI module.

CH: Keyword stands for SCXI channel.

AM: Keyword stands for AMUX-64T device.

!: Delimiter.

For example, the following string specifies an onboard analog input channel 5 as the trigger channel:

AT5

When using messaging with an SCXI module in Parallel mode, you must refer to the channels by their onboard channel numbers, not their SCXI channel numbers.

The following string specifies SCXI channel 1 in SCXI module 2 of SCXI chassis 4 as the trigger channel:

SC4!MD2!CH1

The following specifies AMUX channel 34 on the AMUX-64T device 1 as the trigger channel:

AM1!34

You can specify only one AMUX channel in the **chanStr** parameter.

You also can specify more than one channel as the trigger channel by listing all the channels when specifying channel number. For example, the following string specifies onboard analog input channel 2, 4, 6, and 8 as the trigger channels:

AI2, AI4, AI6, AI8

Also, if your channel numbers are consecutive, you can use the following shortcut to specify onboard analog input channels 2 through 8 as trigger channels:

AI2:8

**DAQEvent** indicates the event criteria for user notification. The following table describes the different types of messages available in NI-DAQ. A *scan* is defined as one pass through all the analog input or output channels or digital ports that are part of your asynchronous DAQ operation.



**Note** If you are using a DAQ device in a remote SCXI configuration for digital I/O operations, DAQ events are not supported.



**Note** To use a DIO device with this function, your device must be in handshaking mode. Otherwise, NI-DAQ will not be able to search for the trigger condition for your DIO device.

Table 2-10. DAQEvent Messages

| DAQEvent<br>Type                        | Code                                                                    | Description of Message                                                                                                                                                                                                                                                                         | Usable Devices<br><usable families="" operation=""></usable>          |
|-----------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Acquire or                              | 0                                                                       | Send exactly one message                                                                                                                                                                                                                                                                       | MIO devices <ai, ao=""></ai,>                                         |
| _                                       | N scans  operation has c  DAQTrigVal0  output operatio  with output FII | when an asynchronous operation has completed                                                                                                                                                                                                                                                   | 671X devices                                                          |
| 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |                                                                         | DAQTrigVal0 scans. For any output operation on devices with output FIFOs, this message occurs after <i>N</i> scans have been written into the output FIFO. This includes analog output devices, such as MIO E-Series boards with AO FIFOS, and digital I/O devices, such as DIO 6533/DIO-32HS. | 6025E devices,<br>AT-MIO-16DE-10 <dio></dio>                          |
|                                         |                                                                         |                                                                                                                                                                                                                                                                                                | AI devices <ai></ai>                                                  |
|                                         |                                                                         |                                                                                                                                                                                                                                                                                                | Lab and 1200 Series devices <ai, ao,="" dio=""></ai,>                 |
|                                         |                                                                         |                                                                                                                                                                                                                                                                                                | AT-AO-6/10 <ao></ao>                                                  |
|                                         |                                                                         |                                                                                                                                                                                                                                                                                                | 516 and LPM devices,<br>DAQCard-500/700 <ai></ai>                     |
|                                         |                                                                         |                                                                                                                                                                                                                                                                                                | AT-DIO-32F and DIO 6533<br>devices <dio></dio>                        |
|                                         |                                                                         |                                                                                                                                                                                                                                                                                                | DSA devices <ai, ao=""></ai,>                                         |
|                                         |                                                                         |                                                                                                                                                                                                                                                                                                | DIO-24 (6503),<br>DIO-96 <dio></dio>                                  |
| Every N                                 | 1                                                                       | Send a message each time an                                                                                                                                                                                                                                                                    | MIO devices <ai, ao=""></ai,>                                         |
| scans                                   |                                                                         | asynchronous operation completes a multiple of <b>DAQTrigVal0</b> scans. <b>chanStr</b> indicates the type of channel or port, but the actual channel or port number is ignored.                                                                                                               | 671X devices                                                          |
|                                         |                                                                         |                                                                                                                                                                                                                                                                                                | 6025E devices,<br>AT-MIO-16DE-10 <dio></dio>                          |
|                                         |                                                                         |                                                                                                                                                                                                                                                                                                | AI devices <ai></ai>                                                  |
|                                         |                                                                         |                                                                                                                                                                                                                                                                                                | Lab and 1200 Series devices<br><ai, ao,="" dio=""></ai,>              |
|                                         |                                                                         |                                                                                                                                                                                                                                                                                                | AT-AO-6/10 <ao></ao>                                                  |
|                                         |                                                                         | 516 and LPM devices,<br>DAQCard-500/700 <ai></ai>                                                                                                                                                                                                                                              |                                                                       |
|                                         |                                                                         |                                                                                                                                                                                                                                                                                                | DSA devices <ai, ao=""></ai,>                                         |
|                                         |                                                                         |                                                                                                                                                                                                                                                                                                | AT-DIO-32F, DIO 6533 (DIO-32HS),<br>DIO-24 (6503), DIO-96 <dio></dio> |

Table 2-10. DAQEvent Messages (Continued)

| DAQEvent<br>Type        | Code                                          | Description of Message                                                 | Usable Devices<br><usable families="" operation=""></usable> |
|-------------------------|-----------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------|
| Completed               | 2                                             | Send exactly one message                                               | MIO devices <ai, ao=""></ai,>                                |
| operation or stopped by |                                               | when an asynchronous operation completes or is                         | 671X devices                                                 |
| error                   |                                               | stopped for an error. <b>chanStr</b> indicates the type of channel or  | 6025E devices,<br>AT-MIO-16DE-10 <dio></dio>                 |
|                         |                                               | port, but the actual channel or port number is ignored.                | AI devices <ai></ai>                                         |
|                         |                                               | port number is ignored.                                                | Lab and 1200 Series devices<br><ai, ao,="" dio=""></ai,>     |
|                         |                                               |                                                                        | AT-AO-6/10 <ao></ao>                                         |
|                         |                                               |                                                                        | 516 and LPM devices,<br>DAQCard-500/700 <ai></ai>            |
|                         |                                               |                                                                        | DSA devices <ai, ao=""></ai,>                                |
|                         |                                               |                                                                        | AT-DIO-32F and DIO 6533 devices <dio></dio>                  |
|                         |                                               |                                                                        | DIO-24 (6503), DIO-96 <dio></dio>                            |
| Voltage out             | 3                                             | Send a message each time a                                             | MIO and AI devices <ai></ai>                                 |
| of bounds               |                                               | data point from any channel in <b>chanStr</b> is outside of the        | Lab and 1200 Series devices <ai></ai>                        |
|                         |                                               | voltage region bounded by                                              | 516 and LPM devices,                                         |
|                         |                                               | DAQTrigVal0 and DAQTrigVal1, where                                     | DAQCard-500/700 <ai></ai>                                    |
|                         |                                               | DAQTrigVall ≥ DAQTrigVall.                                             |                                                              |
| Voltage                 | 4                                             | Send a message each time a                                             | MIO and AI devices <ai></ai>                                 |
| within<br>bounds        | nin data point from any channe                | data point from any channel in <b>chanStr</b> is inside of the voltage | Lab and 1200 Series devices <ai></ai>                        |
| Dounus                  |                                               | region bounded by                                                      | 516 and LPM devices,                                         |
|                         |                                               | DAQTrigVal0 and                                                        | DAQCard-500/700 <ai></ai>                                    |
|                         | DAQTrigVal1, where DAQTrigVal0 ≥ DAQTrigVal1. |                                                                        |                                                              |

Table 2-10. DAQEvent Messages (Continued)

| DAQEvent<br>Type                          | Code | Description of Message                                                                                                                                                                                                                                                                                              | Usable Devices<br><usable families="" operation=""></usable>                                                                                                                                                  |
|-------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Analog<br>positive<br>slope<br>triggering | 5    | Send a message when data from any channel in <b>chanStr</b> positively triggers on the hysteresis window specified by <b>DAQTrigVal0</b> and <b>DAQTrigVal1</b> , where <b>DAQTrigVal0</b> ≥ <b>DAQTrigVal1</b> . To positively trigger, data must first go below <b>DAQTrigVal1</b> and above <b>DAQTrigVal0</b> . | MIO and AI devices <ai> Lab and 1200 Series devices <ai> 516 and LPM devices, DAQCard-500/700 <ai></ai></ai></ai>                                                                                             |
| Analog<br>negative<br>slope<br>triggering | 6    | Send a message when data from any channel in <b>chanStr</b> negatively triggers on the hysteresis window specified by <b>DAQTrigVal0</b> and <b>DAQTrigVal1</b> , where <b>DAQTrigVal0</b> ≥ <b>DAQTrigVal1</b> . To negatively trigger, data must first go above <b>DAQTrigVal0</b> and below <b>DAQTrigVal1</b> . | MIO and AI devices <ai> Lab and 1200 Series devices <ai> 516 and LPM devices, DAQCard-500/700 <ai></ai></ai></ai>                                                                                             |
| Digital pattern not matched               | 7    | Send a message when data from any digital port in <b>chanStr</b> causes this statement to be true: data AND <b>DAQTrigVal0</b> NOT EQUAL <b>DAQTrigVal1</b> . Only the lower word is relevant.                                                                                                                      | Lab and 1200 Series devices (except<br>an SCXI-1200 with remote SCXI)<br><dio><br/>DIO 6533 devices <dio><br/>DIO-24 (6503), DIO-96 <dio><br/>6025E devices, AT-MIO-16DE-10<br/><dio></dio></dio></dio></dio> |

| DAQEvent<br>Type              | Code | Description of Message                                                                                                                                                                     | Usable Devices<br><usable families="" operation=""></usable>                                                                                                                                                  |
|-------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Digital<br>pattern<br>matched | 8    | Send a message when data from any digital port in <b>chanStr</b> causes this statement to be true: data AND <b>DAQTrigVal0</b> EQUAL <b>DAQTrigVal1</b> . Only the lower word is relevant. | Lab and 1200 Series devices (except<br>an SCXI-1200 with remote SCXI)<br><dio><br/>DIO 6533 devices <dio><br/>DIO-24 (6503), DIO-96 <dio><br/>6025E devices, AT-MIO-16DE-10<br/><dio></dio></dio></dio></dio> |
| Counter pulse event           | 9    | Send a message each time a pulse occurs in a timing signal. You can configure only one such event message at a time on a device, except on the PC-TIO-10, which can have two.              | PC-TIO-10 <tio></tio>                                                                                                                                                                                         |

**Table 2-10.** DAQEvent Messages (Continued)

**DAQEvent** = 3 through 8—These **DAQEvents** are for interrupt-driven data acquisition only. See Set\_DAQ\_Device\_Info for switching between interrupt-driven and DMA-driven data acquisition.

If you are using a DIO 6533 device in pattern match trigger mode, you cannot select **DAQEvent** 7 or 8. Refer to the DIG\_Trigger\_Config function for an explanation of the pattern match trigger mode.

If you are using a Lab or 1200 Series device in pretrigger mode, NI-DAQ does not send any messages you configure for the end of the acquisition. These devices do not generate an interrupt at the end of the acquisition when in pretrigger mode.

**DAQEvent** = 9—NI-DAQ sends a message when a transition (low to high or high to low) appears on a counter output or external timing signal I/O pin. Table 2-11 shows the possible counters and external timing signals that are valid for each supported device.

If you are using one of the counters on the PC-TIO-10 for your timing signal, you must connect the counter output to the EXTIRQ pin either externally through the I/O connector or with the two jumpers on the device. The jumpers connect the OUT2 and OUT7 pins with the EXTIRQ1 and EXTIRQ2 pins, respectively. NI-DAQ returns an error if you specify a counter that is in use. Use EXT1 for the **chanStr** parameter regardless of which EXTIRQ pin you are using. The PC-TIO-10 can have two of these event messages configured at the same time,

therefore you must specify which pin you want to use on the PC-TIO-10 with the **DAQTrigVal0** parameter.

**Table 2-11.** Valid Counters and External Timing Signals for **DAQEvent** = 9

| Data Acquisition Device | I/O Pin            | I/O Pin State Change |
|-------------------------|--------------------|----------------------|
| PC-TIO-10               | EXTIRQ1 or EXTIRQ2 | high to low          |

To use **DAQEvent** = 9, you must configure the device for interrupt-driven waveform generation. This **DAQEvent** works by using the waveform generation timing system. Thus, you cannot use waveform generation or single point analog output with delayed update mode and this **DAQEvent** at the same time on the same device. Also, **DAQEvent** = 9 is not valid for the E Series devices.

**trigSkipCount** is the number of valid triggers NI-DAQ ignores. It can be any value greater than or equal to zero. For example, if **trigSkipCount** is 3, NI-DAQ notifies you when the fourth trigger occurs.

**preTrigScans** is the number of scans of data NI-DAQ collects before looking for the very first trigger. Setting **preTrigScans** to 0 causes NI-DAQ to look for the first trigger as soon as the DAQ process begins.

**postTrigScans** is the number of scans of data NI-DAQ collects after the triggers before notifying you. Setting **postTrigScans** to 0 causes event notification to happen as soon as the trigger occurs.

Refer to the following table for further details on usable parameters for each **DAQEvent** type.

NI-DAQ FRM for PC Compatibles

Table 2-12. Usable Parameters for Different DAQEvent Codes

|                                     |                                            | DAQEvent                                                          |                                          |                                                                                                              |                                                                                                              |                                                                                                            |                                                                                                            |                                                 |                                             |                                                                                              |
|-------------------------------------|--------------------------------------------|-------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------|
| Parameter                           | 0                                          | 1                                                                 | 2                                        | 3                                                                                                            | 4                                                                                                            | 5                                                                                                          | 6                                                                                                          | 7                                               | 8                                           | 9                                                                                            |
| chanStr (where n and m are numbers) | AIn, DIn,<br>DOn,<br>SCn!,<br>AMn!m,AOn    | AIn, DIn,<br>DOn,<br>SCn!,<br>AMn!m,<br>AOn                       | AIn, AOn,<br>DIn, DOn,<br>SCn!,<br>AMn!m | AIn,<br>SCn!,<br>AMn!m                                                                                       | AIn,<br>SCn!,<br>AMn!m                                                                                       | AIn,<br>SCn!,<br>AMn!m                                                                                     | AIn,<br>SCn!,<br>AMn!m                                                                                     | DIn, DOn                                        | DIn, DOn                                    | CTRn, EXT1                                                                                   |
| DAQTrigVal0                         | no. of scans,<br>must be<br>greater than 0 | no. of scans,<br>must be<br>greater than 0<br>(see note<br>below) | ignored                                  | upper bound<br>for analog<br>alarm region<br>(binary), must<br>be greater than<br>or equal to<br>DAQTrigVal1 | upper bound<br>for analog<br>alarm region<br>(binary), must<br>be greater than<br>or equal to<br>DAQTrigVal1 | upper bound for<br>hysteresis<br>window<br>(binary), must<br>be greater than<br>or equal to<br>DAQTrigVal1 | upper bound for<br>hysteresis<br>window<br>(binary), must<br>be greater than<br>or equal to<br>DAQTrigVal1 | digital<br>pattern<br>mask<br>(decimal)         | digital<br>pattern<br>mask<br>(decimal)     | EXTIRQ no.<br>(1 or 2) if<br>chanStr =<br>EXTn for the<br>PC-TIO-10,<br>otherwise<br>ignored |
| DAQTrigVal1                         | ignored                                    | ignored                                                           | ignored                                  | lower bound<br>for analog<br>alarm region<br>(binary)                                                        | lower bound<br>for analog<br>alarm region<br>(binary)                                                        | lower bound for<br>hysteresis<br>window<br>(binary)                                                        | lower bound for<br>hysteresis<br>window<br>(binary)                                                        | digital<br>pattern not<br>to match<br>(decimal) | digital<br>pattern to<br>match<br>(decimal) | ignored                                                                                      |
| trigSkipCount                       | ignored                                    | ignored                                                           | ignored                                  | ignored                                                                                                      | ignored                                                                                                      | no. of triggers<br>to skip                                                                                 | no. of triggers<br>to skip                                                                                 | ignored                                         | ignored                                     | ignored                                                                                      |
| preTrigScans                        | ignored                                    | ignored                                                           | ignored                                  | ignored                                                                                                      | ignored                                                                                                      | no. of scans<br>before trigger<br>condition is met                                                         | no. of scans<br>before trigger<br>condition is met                                                         | ignored                                         | ignored                                     | ignored                                                                                      |
| postTrigScans                       | ignored                                    | ignored                                                           | ignored                                  | ignored                                                                                                      | ignored                                                                                                      | no. of scans<br>after trigger<br>condition is met                                                          | no. of scans<br>after trigger<br>condition is met                                                          | ignored                                         | ignored                                     | ignored                                                                                      |

For the parameters that are ignored, set them to 0.

For **DAQEvent** = 1, **DAQTrigVal0** must be greater than zero. If you are using DMA with double buffers or a pretrigger data acquisition, **DAQTrigVal0** must be an even divisor of the buffer size in scans.

For **DAQEvent** = 1 on an analog output channel, **DAQTrigVal0** must always be an even divisor of the buffer size or a multiple of it.

**handle** is the handle to the window you want to receive a Windows message in when **DAQEvent** happens. If **handle** is 0, no Windows messages are sent.

**message** is a message you define. When **DAQEvent** happens, NI-DAQ passes **message** back to you. **message** can be any value.

**callbackAddr** is the address of the user callback function. NI-DAQ calls this function when **DAQEvent** occurs. If you do not want to use a callback function, set **callbackAddr** to 0.

# **Using This Function**

This function notifies your application when **DAQEvent** occurs. Using **DAQEvent** eliminates continuous polling of asynchronous operations through NI-DAQ functions.

For example, if you have a double-buffered DAQ application, instead of calling DAQ\_DB\_HalfReady continuously, you can call Config\_DAQ\_Event\_Message and set **DAQEvent** to 1 and **DAQTrigVal0** to be one-half your buffer size in units of scans. Then, NI-DAQ notifies your application when it is time to call DAQ\_DB\_Transfer. The same concept applies to digital input/output block functions and analog output functions.

To define a message, call Config\_DAQ\_Event\_Message before starting your DAQ process. You can associate more than one message to the same device by calling Config\_DAQ\_Event\_Message as many times as you need to.

After you define a message, it remains active until you call <code>Config\_DAQ\_Event\_Message</code> or <code>Init\_DA\_Brds</code> to remove messages. To remove a specific message, call <code>Config\_DAQ\_Event\_Message</code> with <code>mode</code> set to 2. When removing a specific message, make sure to provide all the information defining the message, such as <code>chanStr</code> (<code>SCXIchassisID</code>, <code>moduleSlot</code>, <code>chanType</code>, <code>chan</code>), <code>DAQEvent</code>, <code>DAQTrigVal0</code>, <code>DAQTrigVal1</code>, <code>trigSkipCount</code>, <code>preTrigScans</code>, <code>postTrigScans</code>, <code>handle</code>, <code>message</code>, and <code>callbackAddr</code>.

To remove all messages associated with the device, call <code>Config\_DAQ\_Event\_Message</code> with **mode** set to zero and with all other arguments except **deviceNumber** set to zero.

Event notification is done through the Windows API function PostMessage and/or a callback function that you define.

When any trigger event happens, NI-DAQ calls PostMessage as follows:

**handle** and **message** are the same handle and message as previously defined. The least significant byte of **wParam** is the device and the second least significant byte of **wParam** is a Boolean flag, **doneFlag**, indicating whether the DAQ process has ended.

```
doneFlag = 0: Asynchronous operation is still running. doneFlag = 1: Asynchronous operation has stopped.
```

**IParam** contains the number of the scan in which **DAQEvent** occurred.

The following is an example WindowProc routine, written in C:

```
LRESULT CALLBACK WindowProc(HWND hWnd, UINT uMsqId, WPARAM wParam, LPARAM
lParam)
      static unsigned long int uNIDAQeventCount = 0;
      short DAQeventDevice;
      short doneFlag;
      long scansDone;
      switch (uMsqId)
      {
         case WM_PAINT:
            //..handle this message...
            break;
         case WM_DESTROY:
            //..handle this message...
            break;
         case WM NIDAQ MSG:
            //**********
            //put your NI-DAQ Message handling here!
            //***********
            // increment static counter
            uNIDAOeventCount++;
            DAQeventDevice = (wParam & 0x00FF);
            doneFlag = (wParam & 0xFF00) >> 8;
            scansDone = lParam;
            //..handle this message...
            return 0;
            break;
```

```
default:
    // handle other usual messages...
    return DefWindowProc (hWnd, uMsgId, wParam, lParam);
}
```

#### **Callback Functions**

To enable the callback function, you need to provide the address of the callback routine in **callbackAddr**. Therefore, you must write your application in a programming language that supports function pointers, such as C or Assembly.

If you are using LabWindows/CVI, your callback function is called by means of messaging. If you are using LabWindows/CVI 4.0.1, you must take special precautions to prevent multiple accesses to non-multithread-safe libraries from the DAQEvent callback function.

#### Callback Functions in Windows 98/95 and Windows NT

Callbacks are easy and safe to use in Windows 98/95 and Windows NT. Your callback function is called in the foreground and in the context of your process. You can access your global data, make system calls, or call NI-DAQ from your callback function. However, succeeding events will not be handled until your callback has returned. The time delay between the event and notification (also known as *latency*) is highly variable and depends largely on how loaded your system is. Latency is always less with a callback than a Windows message because you avoid the latency of the Windows messaging system.

Latency is less deterministic with packet-based buses, such as the Universal Serial Bus (USB).

Your callback function should use standard C calling conventions. Do not use the CALLBACK function type. Here is a sample prototype:

```
void myCallback (HWND hwnd, UINT message, WPARAM wparam, LPARAM
lparam)
```

# Configure\_HW\_Analog\_Trigger

#### **Format**

## **Purpose**

Configures the hardware analog trigger. The hardware analog triggering circuitry produces a digital trigger that you can use for any of the signals available through the Select\_Signal function by selecting **source** = ND\_PFI\_0.

### **Parameters**

# Input

| Name         | Туре | Description                                         |
|--------------|------|-----------------------------------------------------|
| deviceNumber | i16  | assigned by configuration utility                   |
| onOrOff      | u32  | turns the analog trigger on or off                  |
| lowValue     | i32  | specifies the low level used for analog triggering  |
| highValue    | i32  | specifies the high level used for analog triggering |
| mode         | u32  | the way the triggers are generated                  |
| trigSource   | u32  | the source of the signal used for triggering        |

#### **Parameter Discussion**

Legal ranges for the **onOrOff**, **mode**, and **trigSource** parameters are given in terms of constants that are defined in a header file. The header file you should use depends on which of the following languages you are using:

- C programmers—NIDAQCNS.H (DATAACQ.H for LabWindows/CVI)
- BASIC programmers—NIDAQCNS.INC (Visual Basic for Windows programmers should refer to the *Programming Language Considerations* section in Chapter 1, *Using the NI-DAQ Functions*, for more information.)
- Pascal programmers—NIDAQCNS.PAS

**onOrOff** informs NI-DAQ whether you want to turn the analog trigger on or off. Legal values for this parameter are ND\_ON and ND\_OFF.

**lowValue** and **highValue** specify the levels you want to use for triggering. For E Series devices, the legal range for the two values is 0 to 255 (0–4,095 for 16-bit boards). In addition, **lowValue** must be less than **highValue**. The voltage levels corresponding to **lowValue** and **highValue** are as follows:

- When **trigSource** = ND\_PFI\_0, 0 corresponds to -10 V and 255 (4,095 for the 16-bit boards) corresponds to +10 V; values between 0 and 255 (4,095 for 16-bit boards) are distributed evenly between -10 V and +10 V. You can use ND\_PFI\_0 as the analog signal you are triggering off of at the same time you designate ND\_PFI\_0 as a source for a Select\_Signal **signal**.
- When **trigSource** = ND\_THE\_AI\_CHANNEL and the channel is in bipolar mode, the following conditions apply:
  - Most Boards—0 corresponds to -5 V, 255 corresponds to +5 V; values between 0 and 255 are evenly distributed between -5 V and +5 V.
  - 61XX Devices—0 corresponds to −10 V; 255 corresponds to +10 V; and values between 0 and 255 are evenly distributed between −10 V and +10 V.
  - 16-Bit Boards—0 corresponds to −10 V; 4,095 corresponds to +10 V; and values between 0 and 4,095 are evenly distributed between −10 V and +10 V.
- When **trigSource** = ND\_THE\_AI\_CHANNEL and the channel is in unipolar mode, the following conditions apply:
  - 12-Bit Boards—0 corresponds to 0 V; 255 corresponds to +10 V; and values between
     0 and 255 are evenly distributed between 0 V and +10 V.
  - Most 16-Bit Boards—2,048 corresponds to 0 V; 4,095 corresponds to +10 V; and values between 2,048 and 4,095 are evenly distributed between 0 V and +10 V.
  - 6052E Boards—0 corresponds to 0 V; 4,095 corresponds to +10 V; and values between 0 and 4,095 are evenly distributed between 0 V and +10 V.

See the end of this section for an example calculation for **lowValue**.

For DSA devices, the legal range for **lowValue** and **highValue** is -32,768 to +32,767. These values correspond to the lower limit of the voltage range to the higher limit of the voltage range for the current configuration of the trigger channel. For example, when the channel is configured for 0 dB of gain, -32,768 corresponds to -10 V and +32,767 corresponds to +10 V.

**mode** tells NI-DAQ how you want analog triggers to be converted into digital triggers that the onboard hardware can use for timing.



**Note** The PCI-6110E and PCI-6111E can use any of the analog input channels for the trigSource. For these devices set trigSource to the channel number you want, instead of the constant ND\_THE\_AI\_CHANNEL.



**Note** This also applies to the 445X and 455X devices.

The following paragraphs and figures show all of the available modes and illustrations of corresponding trigger generation scenarios. Values specified by **highValue** and **lowValue** are represented using dashed lines, and the signal used for triggering is represented using a solid line.

• ND\_BELOW\_LOW\_LEVEL—The trigger is generated when the signal value is less than the lowValue. highValue is unused.

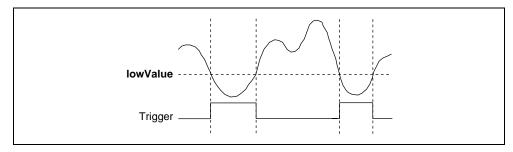



Figure 2-4. ND\_BELOW\_LOW\_LEVEL

• ND\_ABOVE\_HIGH\_LEVEL—The trigger is generated when the signal value is greater than the **highValue**. **lowValue** is unused.




Figure 2-5. ND\_ABOVE\_HIGH\_LEVEL

• ND\_INSIDE\_REGION—The trigger is generated when the signal value is between the **lowValue** and the **highValue**.

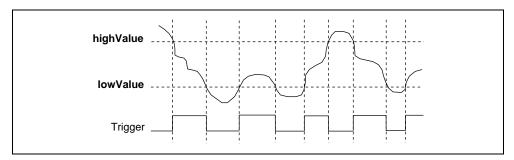



Figure 2-6. ND\_INSIDE\_REGION

• ND\_HIGH\_HYSTERESIS—The trigger is generated when the signal value is greater than the **highValue**, with hysteresis specified by **lowValue**.

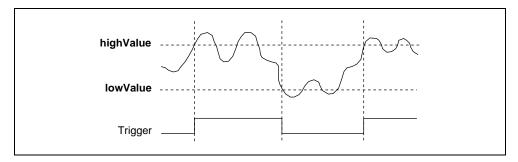



Figure 2-7. ND\_HIGH\_HYSTERESIS

• ND\_LOW\_HYSTERESIS—The trigger is generated when the signal value is less than the **lowValue**, with hysteresis specified by **highValue**.

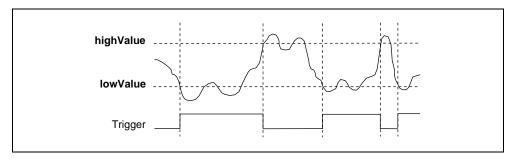



Figure 2-8. ND\_LOW\_HYSTERESIS

Use the **trigSource** parameter to specify the source of the trigger you want to use. For E Series devices, the legal values are ND\_PFI\_0 and ND\_THE\_AI\_CHANNEL.

Set **trigSource** to ND\_PFI\_0 if you want the trigger to come from the PFI0/TRIG1 pin. You need to connect the analog signal you want to use for triggering to the PFI0/TRIG1 pin. To generate triggers based on an analog signal that takes a wide range of values between -10 V and +10 V, you should use this setting.

You should select ND\_THE\_AI\_CHANNEL for **trigSource** only to generate triggers based on a low-range analog signal, if you are concerned about signal quality and are using a shielded cable, or if you want the trigger to be based on an analog input channel in the differential mode. Using this selection is non-trivial.

If you set **trigSource** to ND\_THE\_AI\_CHANNEL, you can use the signal connected to one of the analog input pins for triggering. In this case, the signal is amplified on the device before it is used for trigger generation. You can use this source selection under the following conditions:

- You want to perform data acquisition from a single analog input channel (the DAQ family of functions). You can use only the channel you are acquiring data from for analog triggering.
- You want to perform data acquisition from more than one analog input channel (a combination of the DAQ and SCAN families of functions). The only analog input channel you can use as the start trigger is the first channel from your list of channels. You cannot use this form of the analog trigger for the stop trigger in case of pretriggered data acquisition.



**Note** The PCI-6110E and PCI-6111E can use any analog input channel.

- You do not want to perform any analog input operations (the AI, DAQ, and SCAN families of functions). You must use AI\_Setup to select the analog input channel you want to use and the gain of the instrumentation amplifier. You also can use AI\_Configure to alter the configuration of the analog input channel.
- You want to use AI\_Check, and you want to use the analog trigger for conversion timing. You do not have to perform any special steps.

The reason for using these constraints is that if you are scanning among several analog input channels, signals from those channels are multiplexed in time, and the analog triggering circuitry is unable to distinguish between signals from individual channels in this case.

For DSA devices only, any of the analog input channels can be the source of the analog trigger, even channels that are not part of the channel list set in DAQ\_Start or SCAN\_Setup. Set **trigSource** to the channel number of the channel to monitor for the analog trigger.

# **Using This Function**

When you use this function, you activate the onboard analog triggering hardware. This onboard hardware generates a digital trigger that the DAQ-STC then uses for timing and control. To use the analog trigger, you need to use this function and the Select\_Signal function. To use analog triggering, use as much hysteresis as your application allows because the circuitry used for this purpose is very noise-sensitive.

For E series devices, when you use Select\_Signal, set **source** to ND\_PFI\_0 for your signal, and set **sourceSpec** as appropriate. Notice that the two polarity selections give you timing control in addition to the five triggering modes listed here. For DSA devices, when you use Select\_Signal, set **source** to ND\_ATC\_OUT for your signal, and set **sourceSpec** to ND\_DONT\_CARE. NI-DAQ will route the analog trigger circuit output as appropriate for the device.

For example, if you set **source** to ND\_THE\_AI\_CHANNEL, the channel you are interested in is in bipolar mode, you want a gain of 100, and you want to set the voltage window for triggering to +35 mV and +45 mV for your original signal (that is, signal before amplification by the onboard amplifier), you should make the following programming sequence:

#### 12-bit boards:

```
status = Configure_HW_Analog_Trigger (deviceNumber, ND_ON, 218, 243, mode,
ND_THE_AI_CHANNEL)
```

Status = Select\_Signal (deviceNumber, ND\_IN\_START\_TRIGGER, ND\_PFI\_0,
ND\_LOW\_TO\_HIGH)

16-bit boards:

```
status = Configure_HW_Analog_Trigger (deviceNumber, ND_ON, 2764, 2969, mode,
ND_THE_AI_CHANNEL)
```

```
status = Select_Signal (deviceNumber, ND_IN_START_TRIGGER, ND_PFI_0,
ND_LOW_TO_HIGH)
```

To calculate **lowValue** in the previous example, do the following:

- 1. Multiply 35 mV by 100 to adjust for the gain to get 3.5 V.
- 2. Use the following formula to map the 3.5 V from the -5 V to +5 V scale to a value on the 0 to 255 (0–4,095 for the 16-bit boards) scale:

```
value = (3.5/5 + 1) * 128 = 218 (for the 0 to 255 case)
```

Use the following formula to map the 3.5~V from the -10~V to +10~V scale to a value on the 0 to 4.095 scale:

```
value = (3.5/10 + 1) * 2,048 = 2,764 (for the 0 to 4,095 case)
```

In general, the scaling formulas are as follows:

• For an analog input channel in the bipolar mode:

```
12-bit boards: value = (\text{voltage/5} + 1) * 128
16-bit boards: value = (\text{voltage/10} + 1) * 2048
```

• For an analog input channel in the unipolar mode:

```
12-bit boards: value = (voltage/10) * 256
Most 16-bit boards: value = (voltage/10 +1) * 2048
6052E boards: value = (voltage/10) * 4096
```

• For the PFI0/TRIG1 pin:

```
12-bit boards: value = (voltage/10 + 1) *1 28
16-bit boards: value = (voltage/10 + 1) *2048
```

If you apply any of the formulas and get a value equal to 256, use the value 255 instead; if you get 4,096 with the 16-bit boards, use 4,095 instead.

You can use the following programming sequence to set up an acquisition to be triggered using the hardware analog trigger, where the trigger source is the PFI0/TRIG1 pin:

```
status = Configure_HW_Analog_Trigger (deviceNumber, ND_ON, lowValue, highValue, mode, ND_PFI_O)
```

```
status = Select_Signal (deviceNumber, ND_IN_START_TRIGGER, ND_PFI_0,
ND_LOW_TO_HIGH)
```

# CTR\_Config

#### **Format**

status = CTR\_Config (deviceNumber, ctr, edgeMode, gateMode, outType, outPolarity)

# **Purpose**

Specifies the counting configuration to use for a counter.

#### **Parameters**

### Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |
| ctr          | i16  | counter number                    |
| edgeMode     | i16  | count rising or falling edges     |
| gateMode     | i16  | gating mode to be used            |
| outType      | i16  | type of output generated          |
| outPolarity  | i16  | output polarity                   |

### **Parameter Discussion**

ctr is the counter number.

Range: 1 through 10 for a PC-TIO-10.

**edgeMode** indicates which edge of the input signal that the counter should count. **edgeMode** must be either 0 or 1.

- 0: counter counts rising edges.
- 1: counter counts falling edges.

**gateMode** selects the gating mode to be used by the counter. There are eight different gating modes. Each gating mode has been assigned a number between 0 and 7. The available gating modes are as follows:

- 0: No gating used.
- 1: High-level gating of counter **ctr** used.
- 2: Low-level gating of counter **ctr** used.
- 3: Edge-triggered gating used—rising edge of counter **ctr**.
- 4: Edge-triggered gating used—falling edge of counter **ctr**.
- 5: Active high on terminal count of next lower-order counter.
- 6: Active high on gate of next higher-order counter.

- 7: Active high on gate of next lower-order counter.
- 8: Special gating.

**outType** selects which type of output is to be generated by the counter. The counters generate two types of output signals: TC toggled output and TC pulse output.

- 0: TC toggled output type used.
- 1: TC pulse output type used.

**outPolarity** selects the output polarity used by the counter.

- 0: Positive logic output.
- 1: Negative logic (inverted) output.

# **Using This Function**

If you select TC pulse output type, **outPolarity** = 0 means that NI-DAO generates active logic-high terminal count pulses. **outPolarity** = 1 means that NI-DAQ generates active logic-low terminal count pulses.

Similarly, if you select TC toggled output type, then **outPolarity** = 0 means the OUT signal toggles from low to high on the first TC. **outPolarity** = 1 means the OUT signal toggles from high to low on the first TC.

CTR\_Config saves the parameters in the configuration table for the specified counter. NI-DAQ uses this configuration table when the counter is set up for an event-counting, pulse output, or frequency output operation. You can use CTR\_Config to take advantage of the many counter modes.

The default settings for the counter configuration modes are as follows:

```
edgeMode = 0: Counter counts rising edges.
gateMode = 0: No gating used.
outType = 0: TC toggled output type used.
outPolarity = 0: Positive logic output used.
```

To change the counter configuration from this default setting, you must call CTR\_Config and indicate which configuration you want before initiating any other counter operation.

Counter configuration settings applied through this function persist when waveform generation functions use the same counter. For example, to externally trigger a waveform generation option, use this function to change the **gatemode** to 1 (high-level gating), and then call the waveform generation functions. The waveform generation is delayed until a high-level signal appears on the gate pin on the I/O connector. Notice that this is really not a trigger signal but is a gating signal because the waveform generation pauses if the gate goes low at any time. Because the Am9513 counter/timer chip has certain limitations, you cannot use gateModes 3 and 4. You are responsible for producing a signal that stays high for the duration of the waveform generation operation.

# **CTR EvCount**

#### **Format**

status = CTR\_EvCount (deviceNumber, ctr, timebase, cont)

## **Purpose**

Configures the specified counter for an event-counting operation and starts the counter.

#### **Parameters**

### Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |
| ctr          | i16  | counter number                    |
| timebase     | i16  | timebase value                    |
| cont         | i16  | whether counting continues        |

## **Parameter Discussion**

ctr is the counter number.

Range: 1 through 10 for a PC-TIO-10.

**timebase** selects the timebase, or resolution, to be used by the counter. **timebase** has the following possible values:

- -1: Internal 5 MHz clock used as timebase (200 ns resolution).
- 0: TC signal of **ctr**-1 used as timebase.
- 1: Internal 1 MHz clock used as timebase (1 µs resolution).
- 2: Internal 100 kHz clock used as timebase (10 µs resolution).
- 3: Internal 10 kHz clock used as timebase (100 µs resolution).
- 4: Internal 1 kHz clock used as timebase (1 ms resolution).
- 5: Internal 100 Hz clock used as timebase (10 ms resolution).
- 6: SOURCE1 used as timebase if 1 ≤ ctr ≤ 5 or SOURCE 6 used as timebase if 6 ≤ ctr ≤ 10.
- 7: SOURCE2 used as timebase if  $1 \le \text{ctr} \le 5$  or SOURCE 7 used as timebase if  $6 \le \text{ctr} \le 10$ .
- 8: SOURCE3 used as timebase if  $1 \le \text{ctr} \le 5$  or SOURCE 8 used as timebase if  $6 \le \text{ctr} \le 10$ .
- 9: SOURCE4 used as timebase if  $1 \le \text{ctr} \le 5$  or SOURCE 9 used as timebase if  $6 \le \text{ctr} \le 10$ .
- 10: SOURCE5 used as timebase if  $1 \le \mathbf{ctr} \le 5$  or SOURCE 10 used as timebase if  $6 \le \mathbf{ctr} \le 10$ .

- 11: GATE 1 used as timebase if  $1 \le \mathbf{ctr} \le 5$  or GATE6 used as timebase if  $6 \le \mathbf{ctr} \le 10$ .
- 12: GATE 2 used as timebase if  $1 \le \mathbf{ctr} \le 5$  or GATE7 used as timebase if  $6 \le \mathbf{ctr} \le 10$ .
- 13: GATE 3 used as timebase if  $1 \le \mathbf{ctr} \le 5$  or GATE8 used as timebase if  $6 \le \mathbf{ctr} \le 10$ .
- 14: GATE 4 used as timebase if  $1 \le \mathbf{ctr} \le 5$  or GATE9 used as timebase if  $6 \le \mathbf{ctr} \le 10$ .
- 15: GATE 5 used as timebase if  $1 \le \mathbf{ctr} \le 5$  or GATE10 used as timebase if  $6 \le \mathbf{ctr} \le 10$ .

Set **timebase** to zero to concatenate counters. Set **timebase** to 1 through 5 for the counter to count one of the five available internal signals. Set **timebase** to 6 through 15 (except 10 for the PC-TIO-10) to provide an external signal to a counter. This external signal is then the signal NI-DAQ counts for event counting.

**cont** indicates whether counting continues after the counter reaches 65,535 and rolls over to zero. **cont** can be either 0 or 1. If **cont** = 0, event counting stops when the counter reaches 65,535 and rolls over, in which case an overflow condition is registered. If **cont** = 1, event counting continues when the counter rolls over and no overflow condition is registered. **cont** = 1 is useful when more than one counter is concatenated for event counting.

## **Using This Function**

CTR\_EvCount configures the specified counter for an event-counting operation. The function configures the counter to count up from zero and to use the gating mode, edge mode, output type, and polarity as specified by the CTR\_Config call.



**Note** Edge gating mode does not operate properly during event counting if cont = 1. If cont = 1, use level gating modes or no-gating mode.

Applications for CTR\_EvCount are discussed in *Event-Counting Applications* in Chapter 3, *Software Overview*, of the *NI-DAQ User Manual for PC Compatibles*.

# CTR EvRead

#### **Format**

status = CTR\_EvRead (deviceNumber, ctr, overflow, count)

## **Purpose**

Reads the current counter total without disturbing the counting process and returns the count and overflow conditions.

### **Parameters**

### Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |
| ctr          | i16  | counter number                    |

# Output

| Name     | Туре | Description                            |
|----------|------|----------------------------------------|
| overflow | *i16 | overflow state of the counter          |
| count    | *u16 | current total of the specified counter |

#### Parameter Discussion

ctr is the counter number.

Range: 1 through 10 for a PC-TIO-10.

**overflow** returns the overflow state of the counter. A counter overflows if it counts up to 65,535 and rolls over to zero on the next count. If **overflow** = 0, no overflow has occurred. If **overflow** = 1, an overflow occurred. See the *Special Considerations for Overflow Detection* section later in this function description.

**count** returns the current total of the specified counter. **count** can be between zero and 65,535. **count** represents the number of edges (either falling or rising edges, not both) that have occurred since the counter started counting.



**Note** C Programmers—overflow and count are pass-by-address parameters.

## **Using This Function**

CTR\_EvRead reads the current value of the counter without disturbing the counting process and returns the value in **count**. CTR\_EvRead also performs overflow detection and returns the overflow status in **overflow**. Overflow detection and the significance of **count** depend on the counter configuration.

## **Special Considerations for Overflow Detection**

For NI-DAQ to detect an overflow condition, you must configure the counter for TC toggled output type and positive output polarity, and then you must configure the counter to stop counting on overflow (cont = 0 in the CTR\_EvCount call). If these conditions are not met, the value of overflow is meaningless. If more than one counter is concatenated for event-counting applications, you should configure the lower-order counters to continue counting when overflow occurs, and overflow detection is only meaningful for the highest order counter. count, returned by CTR\_EvRead for the lower-order counters, then represents the module 65,536 event count. See Event-Counting Applications in Chapter 3, Software Overview, in the NI-DAQ User Manual for PC Compatibles for more information.

#### **Format**

status = CTR\_FOUT\_Config (deviceNumber, FOUT\_port, mode, timebase, division)

## **Purpose**

Disables or enables and sets the frequency of the 4-bit programmable frequency output.

Chapter 2

#### **Parameters**

### Input

| Name         | Туре | Description                                         |
|--------------|------|-----------------------------------------------------|
| deviceNumber | i16  | assigned by configuration utility                   |
| FOUT_port    | i16  | frequency output port                               |
| mode         | i16  | enable or disable the programmable frequency output |
| timebase     | i16  | timebase value                                      |
| division     | i16  | divide-down factor for generating the clock         |

### **Parameter Discussion**

**FOUT\_port** is the frequency output port to be programmed.

- 1: For FOUT1 on the PC-TIO-10.
- 2: For FOUT2 on the PC-TIO-10.

**mode** selects whether to enable or disable the programmable frequency output. **mode** can be 0 or 1.

- 0: The frequency output signal is turned off to a low-logic state.
- 1: The frequency output signal is enabled.

If mode = 0, none of the following parameters apply.

**timebase** selects the timebase, or resolution, to be used by the programmable frequency output. **timebase** has the following possible values:

- -1: Internal 5 MHz clock used as timebase (200 ns resolution).
  - 1: Internal 1 MHz clock used as timebase (1 µs resolution).
  - 2: Internal 100 kHz clock used as timebase (10 µs resolution).
  - 3: Internal 10 kHz clock used as timebase (100 µs resolution).
  - 4: Internal 1 kHz clock used as timebase (1 ms resolution).
- 5: Internal 100 Hz clock used as timebase (10 ms resolution).

- 6: SOURCE1 used as timebase if **FOUT\_port** = 1 or SOURCE 6 used as timebase if **FOUT** port = 2.
- 7: SOURCE2 used as timebase if **FOUT port** = 1 or SOURCE 7 used as timebase if **FOUT** port = 2.
- 8: SOURCE3 used as timebase if **FOUT port** = 1 or SOURCE 8 used as timebase if **FOUT** port = 2.
- 9: SOURCE4 used as timebase if **FOUT port** = 1 or SOURCE 9 used as timebase if **FOUT** port = 2.
- SOURCE5 used as timebase if **FOUT port** = 1 or SOURCE 10 used as timebase 10: if **FOUT** port = 2.
- 11: GATE 1 used as timebase if **FOUT** port = 1 or GATE6 used as timebase if  $FOUT_port = 2$ .
- GATE 2 used as timebase if **FOUT port** = 1 or GATE7 used as timebase 12: if **FOUT** port = 2.
- GATE 3 used as timebase if **FOUT port** = 1 or GATE8 used as timebase 13: if **FOUT** port = 2.
- 14: GATE 4 used as timebase if **FOUT** port = 1 or GATE9 used as timebase if **FOUT** port = 2.
- 15: GATE 5 used as timebase if **FOUT port** = 1 or GATE10 used as timebase if **FOUT** port = 2.

division is the divide-down factor for generating the clock. The clock frequency is then equal to (timebase frequency)/division.

Range: 1 through 16.

# **Using This Function**

CTR FOUT Config generates a 50% duty-cycle output clock at the programmable frequency output signal FOUT if mode = 1; otherwise, the FOUT signal is a low-logic state. The frequency of the FOUT signal is the frequency corresponding to timebase divided by the division factor.

# **CTR** Period

#### **Format**

status = CTR\_Period (deviceNumber, ctr, timebase)

## **Purpose**

Configures the specified counter for period or pulse-width measurement.

#### **Parameters**

### Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |
| ctr          | i16  | counter number                    |
| timebase     | i16  | timebase value                    |

#### Parameter Discussion

ctr is the counter number.

Range: 1 through 10 for a PC-TIO-10.

**timebase** selects the timebase, or resolution, to be used by the counter. **timebase** has the following possible values:

- -1: Internal 5 MHz clock used as timebase (200 ns resolution).
  - 0: TC signal of **ctr**-1 used as timebase.
  - 1: Internal 1 MHz clock used as timebase (1 µs resolution).
  - 2: Internal 100 kHz clock used as timebase (10 µs resolution).
  - 3: Internal 10 kHz clock used as timebase (100 µs resolution).
- 4: Internal 1 kHz clock used as timebase (1 ms resolution).
- 5: Internal 100 Hz clock used as timebase (10 ms resolution).
- 6: SOURCE1 used as timebase if  $1 \le \text{ctr} \le 5$  or SOURCE 6 used as timebase if  $6 \le \text{ctr} \le 10$ .
- 7: SOURCE2 used as timebase if  $1 \le \mathbf{ctr} \le 5$  or SOURCE 7 used as timebase if  $6 \le \mathbf{ctr} \le 10$ .
- 8: SOURCE3 used as timebase if  $1 \le \text{ctr} \le 5$  or SOURCE 8 used as timebase if  $6 \le \text{ctr} \le 10$ .
- 9: SOURCE4 used as timebase if 1 ≤ ctr ≤ 5 or SOURCE 9 used as timebase if 6 ≤ ctr ≤ 10.
- 10: SOURCE5 used as timebase if  $1 \le \mathbf{ctr} \le 5$  or SOURCE 10 used as timebase if  $6 \le \mathbf{ctr} \le 10$ .

- 11: GATE 1 used as timebase if  $1 \le \mathbf{ctr} \le 5$  or GATE6 used as timebase if  $6 \le \mathbf{ctr} \le 10$ .
- 12: GATE 2 used as timebase if  $1 \le \mathbf{ctr} \le 5$  or GATE7 used as timebase if  $6 \le \mathbf{ctr} \le 10$ .
- 13: GATE 3 used as timebase if  $1 \le \mathbf{ctr} \le 5$  or GATE8 used as timebase if  $6 \le \mathbf{ctr} \le 10$ .
- 14: GATE 4 used as timebase if  $1 \le \mathbf{ctr} \le 5$  or GATE9 used as timebase if  $6 \le \mathbf{ctr} \le 10$ .
- 15: GATE 5 used as timebase if  $1 \le \mathbf{ctr} \le 5$  or GATE10 used as timebase if  $6 \le \mathbf{ctr} \le 10$ .

Set **timebase** to 0 to concatenate counters. Set **timebase** to 1 through 5 for the counter to count one of the five available internal signals. Set **timebase** to 6 through 15 (except 10 for the PC-TIO-10) to provide an external signal to a counter. This external signal becomes the signal NI-DAQ counts for event counting.

# **Using This Function**

CTR\_Period configures the specified counter for period and pulse-width measurement. The function configures the counter to count up from zero and to use the gating mode, edge mode, output type, and polarity as specified by the CTR\_Config call.

Applications for CTR\_Period are discussed in the section *Period and Continuous Pulse-Width Measurement Applications* in Chapter 3, *Software Overview*, of the *NI-DAQ User Manual for PC Compatibles*.

# **CTR** Pulse

#### **Format**

status = CTR\_Pulse (deviceNumber, ctr, timebase, delay, pulseWidth)

## **Purpose**

Causes the specified counter to generate a specified pulse-programmable delay and pulse width.

#### **Parameters**

### Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |
| ctr          | i16  | counter number                    |
| timebase     | i16  | timebase value                    |
| delay        | u16  | interval before the pulse         |
| pulseWidth   | u16  | interval of the pulse             |

### **Parameter Discussion**

ctr is the counter number.

Range: 1 through 10 for a PC-TIO-10.

**timebase** selects the timebase, or resolution, to be used by the counter. **timebase** has the following possible values:

- -1: Internal 5 MHz clock used as timebase (200 ns resolution).
  - 0: TC signal of **ctr**-1 used as timebase.
  - 1: Internal 1 MHz clock used as timebase (1 µs resolution).
  - 2: Internal 100 kHz clock used as timebase (10 µs resolution).
  - 3: Internal 10 kHz clock used as timebase (100 µs resolution).
  - 4: Internal 1 kHz clock used as timebase (1 ms resolution).
  - 5: Internal 100 Hz clock used as timebase (10 ms resolution).
  - 6: SOURCE1 used as timebase if 1 ≤ ctr ≤ 5 or SOURCE 6 used as timebase if 6 < ctr < 10.
  - 7: SOURCE2 used as timebase if  $1 \le \mathbf{ctr} \lor 5$  or SOURCE 7 used as timebase if  $6 \le \mathbf{ctr} \le 10$ .
  - 8: SOURCE3 used as timebase if  $1 \le \text{ctr} \le 5$  or SOURCE 8 used as timebase if  $6 \le \text{ctr} \le 10$ .

- 9: SOURCE4 used as timebase if 1 ≤ ctr ≤ 5 or SOURCE 9 used as timebase if 6 < ctr < 10.
- 10: SOURCE5 used as timebase if  $1 \le \mathbf{ctr} \le 5$  or SOURCE 10 used as timebase if  $6 \le \mathbf{ctr} \le 10$ .
- 11: GATE 1 used as timebase if  $1 \le \mathbf{ctr} \le 5$  or GATE6 used as timebase if  $6 \le \mathbf{ctr} \le 10$ .
- 12: GATE 2 used as timebase if  $1 \le \mathbf{ctr} \le 5$  or GATE7 used as timebase if  $6 \le \mathbf{ctr} \le 10$ .
- 13: GATE 3 used as timebase if  $1 \le \mathbf{ctr} \le 5$  or GATE8 used as timebase if  $6 \le \mathbf{ctr} \le 10$
- 14: GATE 4 used as timebase if  $1 \le \mathbf{ctr} \le 5$  or GATE9 used as timebase if  $6 \le \mathbf{ctr} \le 10$ .
- 15: GATE 5 used as timebase if  $1 \le \mathbf{ctr} \le 5$  or GATE10 used as timebase if  $6 \le \mathbf{ctr} \le 10$ .

Set **timebase** to 0 to concatenate counters. Set **timebase** to 1 through 5 for the counter to use one of the five available internal signals. Set **timebase** to 6 through 15 (except 10 for the PC-TIO-10) to provide an external clock to the counter.

**delay** is the delay before NI-DAQ generates the pulse. **delay** can be between 3 and 65,535. Use the following formula to determine the actual time period that **delay** represents:

delay \* (timebase resolution)

**pulseWidth** is the width of the pulse NI-DAQ generates. **pulseWidth** can be between 0 and 65,535. Use the following formula to determine the actual time that **pulseWidth** represents:

pulseWidth \* (timebase resolution)

for  $1 \le$ **pulseWidth**  $\le 65,535$ . **pulseWidth** = 0 is a special case of pulse generation and actually generates a pulse of infinite duration (see the timing diagrams in Figures 2-9 and 2-10).

# **Using This Function**

CTR\_Pulse sets up the counter to generate a pulse of the duration specified by **pulseWidth**, after a time delay of the duration specified by **delay**. If you specify no gating, CTR\_Pulse starts the counter; otherwise, counter operation is controlled by the gate input. The selected timebase determines the timing of pulse generation as shown in Figure 2-9.

You can generate successive pulses by calling CTR\_Restart or CTR\_Pulse again. Be sure that the delay period of the previous pulse has elapsed before calling CTR\_Restart or CTR\_Pulse. A successive call waits until the previous pulse is completed before generating the next pulse. In the case where **pulseWidth** = 0 and TC toggle output is used, the output polarity toggles after every call to CTR\_Restart.

# **Pulse Generation Timing Considerations**

Figure 2-9 shows pulse generation timing for both the TC toggled output and TC pulse output cases. These signals are positive polarity output signals.

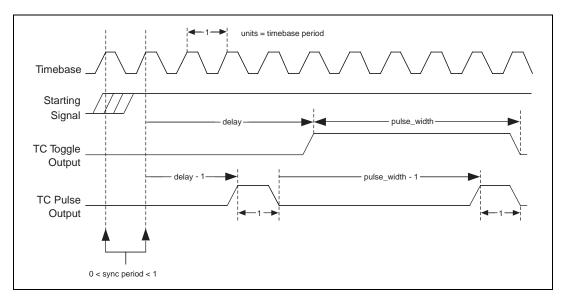



Figure 2-9. Pulse Generation Timing

An uncertainty is associated with the delay period due to counter synchronization. Counting starts on the first timebase edge *after* NI-DAQ applies the starting signal. The time between receipt of the starting pulse and start of pulse generation can be between (**delay**) and (**delay** + 1) units of the timebase in duration.

**pulseWidth** = 0 generates a special case signal as shown in Figure 2-10.

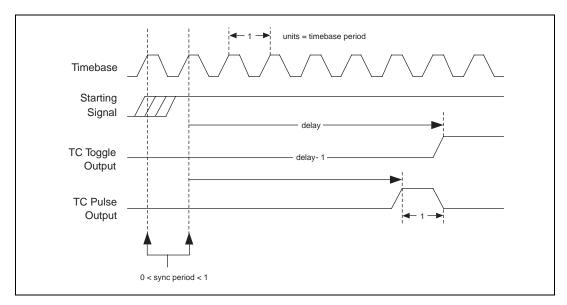



Figure 2-10. Pulse Timing for pulseWidth = 0

#### **Format**

status = CTR\_Rate (freq, duty, timebase, period1, period2)

## **Purpose**

Converts frequency and duty-cycle values of a selected square wave into the timebase and period parameters needed for input to the CTR\_Square function that produces the square wave.

Chapter 2

#### **Parameters**

## Input

| Name | Туре | Description         |
|------|------|---------------------|
| freq | f64  | frequency selected  |
| duty | f64  | duty cycle selected |

## Output

| Name     | Type | Description                                |
|----------|------|--------------------------------------------|
| timebase | *i16 | onboard source signal used                 |
| period1  | *u16 | units of time that the square wave is high |
| period2  | *u16 | units of time that the square wave is low  |

#### **Parameter Discussion**

**freq** is the square wave frequency selected in cycles per second (hertz).

Range: 0.0008 through 2,500,000 Hz.

**duty** is the square wave duty cycle you select as a fraction. With positive output polarity and TC toggled output selected, the fraction expressed by **duty** describes the fraction of a single wavelength of the square wave that is logical high.

Range: 0.0 through 1.0 noninclusive (that is, any value between, but not including, 0.0 and 1.0).

**timebase** is a code that represents the resolution of the onboard source signal that the counter uses to produce the square wave. You can input the value returned by **timebase** directly to the CTR\_Square function.

- 1: 1 µs.
- 2: 10 μs.

- 3: 100 μs.
- 4: 1 ms.
- 5: 10 ms.

**period1** and **period2** represent the number of units of time (selected by **timebase**) that the square wave is high and low, respectively. The roles of **period1** and **period2** are reversed if the output polarity is negative.

Range: 1 through 65,535.



**Note** C Programmers—timebase, period1, and period2 are pass-by-address parameters.

# **Using This Function**

CTR\_Rate translates a definition of a square wave in terms of frequency and duty cycle into terms of a timebase and two period values. You can then input the timebase and period values directly into the CTR\_Square function to produce the selected square wave.

CTR\_Rate emphasizes matching the frequency first and then the duty cycle. That is, if the duty fraction is 0.5, but an odd-numbered total period is needed to produce the selected frequency, the two periods returned by CTR\_Rate will not be equal and the duty cycle of the square wave differs slightly from 50 percent. For example, if **freq** is 40,000 Hz and **duty** is 0.50, CTR\_Rate returns values of 1 for **timebase**, 13 for **period1**, and 12 for **period2**. The resulting square wave has the frequency of 40,000 Hz but a duty fraction of 0.52.

# **CTR Reset**

#### **Format**

status = CTR\_Reset (deviceNumber, ctr, output)

## **Purpose**

Turns off the specified counter operation and places the counter output drivers in the selected output state.

#### **Parameters**

### Input

| Name         | Туре | Description                                   |
|--------------|------|-----------------------------------------------|
| deviceNumber | i16  | assigned by configuration utility             |
| ctr          | i16  | counter number                                |
| output       | i16  | output state of the counter OUT signal driver |

#### **Parameter Discussion**

ctr is the counter number.

Range: 1 through 10 for a PC-TIO-10.

**output** indicates the output state of the counter OUT signal driver. **output** can be between 0 and 2 and represents three choices of output state.

- 0: Set OUT signal driver to high-impedance state.
- 1: Set OUT signal driver to low-logic state.
- 2: Set OUT signal driver to high-logic state.

# **Using This Function**

CTR\_Reset causes the specified counter to terminate its current operation, clears the counter mode, and places the counter OUT driver in the specified output state. When a counter has performed an operation (a square wave, for example), you must use CTR\_Reset to stop and clear the counter before setting it up for any subsequent operation of a different type (event counting, for example). You also can use CTR\_Reset to change the output state of an idle counter.

# CTR\_Restart

#### **Format**

status = CTR\_Restart (deviceNumber, ctr)

# **Purpose**

Restarts operation of the specified counter.

### **Parameters**

### Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |
| ctr          | i16  | counter number                    |

### **Parameter Discussion**

ctr is the counter number.

Range: 1 through 10 for a PC-TIO-10.

# **Using This Function**

You can use CTR\_Restart after a CTR\_Stop operation to allow the suspended counter to resume. If the specified counter was never set up for an operation, CTR\_Restart returns an error.

You also can use CTR\_Restart after a CTR\_Pulse operation to generate additional pulses. CTR\_Pulse generates the first pulse. In this case, do not call CTR\_Restart until after the previous pulse has completed.

# CTR Simul Op

#### **Format**

status = CTR\_Simul\_Op (deviceNumber, numCtrs, ctrList, mode)

## **Purpose**

Configures and simultaneously starts and stops multiple counters.

### **Parameters**

### Input

| Name         | Туре  | Description                       |
|--------------|-------|-----------------------------------|
| deviceNumber | i16   | assigned by configuration utility |
| numCtrs      | i16   | number of counters to operate     |
| ctrList      | [i16] | array of counter numbers          |
| mode         | i16   | operating mode                    |

## **Parameter Discussion**

**numCtrs** is the number of counters to which the operation is performed.

Range: 1 through 10.

**ctrList** is an array of integers of size **numCtrs** containing the counter numbers of the counters for performing the operation.

Range: 1 through 10 for a PC-TIO-10.



**Note** By default, counters are not reserved for simultaneous operations.

**mode** is the operating mode to be performed by this call.

- 0: Cancel reservation of counters specified in **ctrList**.
- 1: Reserve counters specified in **ctrList** for simultaneous start, restart, stop, or count latch operation.
- 2: Perform a simultaneous start/restart on the counters specified in **ctrList**.
- 3: Perform a simultaneous stop on the counters specified in **ctrList**.
- 4: Perform a simultaneous count latch on the counters specified in **ctrlist**. The counters must have been started by a previous call to CTR\_EvCount. The counts can be retrieved one at a time by subsequent calls to CTR\_EvRead.



**Note** It is not necessary to call CTR\_Simul\_Op with mode set to 1 before calling CTR\_Simul\_Op with mode set to 4. That is, you can start two or more counters at different times and still latch their counts at the same time.

## **Using This Function**

You can start multiple counters simultaneously for any combination of event counting, square wave generation, or pulse generation. The following sequence is an example of using CTR\_Simul\_Op:

- 1. Specify the counters to use by putting their counter numbers into the **ctrList** array.
- 2. Call CTR\_Simul\_Op with **mode** = 1 to reserve these counters.
- 3. Set up the counters by calling CTR\_EvCount, CTR\_Period, CTR\_Square, or CTR\_Pulse for each reserved counter. Because these counters are reserved, they will not start immediately by those calls.
- 4. Call CTR\_Simul\_Op with **mode** = 2 to start these counters.
- 5. Call CTR\_Simul\_Op with **mode** = 3 to stop these counters.
- 6. Call CTR\_Simul\_Op with **mode** = 0 to free counters for non-simultaneous operations.

You can simultaneously stop counters from performing CTR\_EvCount, CTR\_Period, CTR\_Square, or CTR\_Pulse regardless of whether they were started by CTR\_Simul\_Op.

Trying to start unreserved counters simultaneously causes this function to return an error.

Call CTR\_Simul\_Op with **mode** = 0 to cancel the reserved status of counters specified in **ctrList**.



**Note** On the PC-TIO-10, the 10 counters are included on two counter/timer chips. These counter/timer chips are programmed sequentially. Simultaneous start-and-stop operations that specify counters from both chips experience a delay between the counters on the first chip (counters 1 through 5) and those on the second chip (counters 6 through 10). NI-DAQ returns a warning condition.

#### **Format**

status = CTR\_Square (deviceNumber, ctr, timebase, period1, period2)

## **Purpose**

Causes the specified counter to generate a continuous square wave output of specified duty cycle and frequency.

Chapter 2

#### **Parameters**

### Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |
| ctr          | i16  | counter number                    |
| timebase     | i16  | timebase value                    |
| period1      | u16  | period of the square wave         |
| period2      | u16  | period of the square wave         |

### **Parameter Discussion**

ctr is the counter number.

Range: 1 through 10 for a PC-TIO-10.

**timebase** is the timebase, or resolution, to be used by the counter. **timebase** has the following possible values:

- -1: Internal 5 MHz clock used as timebase (200 ns resolution).
- 0: TC signal of **ctr**-1 used as timebase.
- 1: Internal 1 MHz clock used as timebase (1 µs resolution).
- 2: Internal 100 kHz clock used as timebase (10 µs resolution).
- 3: Internal 10 kHz clock used as timebase (100 µs resolution).
- 4: Internal 1 kHz clock used as timebase (1 ms resolution).
- 5: Internal 100 Hz clock used as timebase (10 ms resolution).
- 6: SOURCE1 used as timebase if 1 ≤ ctr ≤ 5 or SOURCE 6 used as timebase if 6 < ctr < 10.
- 7: SOURCE2 used as timebase if  $1 \le \mathbf{ctr} \le 5$  or SOURCE 7 used as timebase if  $6 \le \mathbf{ctr} \le 10$ .
- 8: SOURCE3 used as timebase if 1 ≤ ctr v 5 or SOURCE 8 used as timebase if 6 < ctr < 10.

- 9: SOURCE4 used as timebase if 1 ≤ ctr ≤ 5 or SOURCE 9 used as timebase if 6 < ctr < 10.
- 10: SOURCE5 used as timebase if  $1 \le \mathbf{ctr} \le 5$  or SOURCE 10 used as timebase if  $6 \le \mathbf{ctr} \le 10$ .
- 11: GATE 1 used as timebase if  $1 \le \mathbf{ctr} \le 5$  or GATE6 used as timebase if  $6 \le \mathbf{ctr} \le 10$ .
- 12: GATE 2 used as timebase if  $1 \le \mathbf{ctr} \le 5$  or GATE7 used as timebase if  $6 \le \mathbf{ctr} \le 10$ .
- 13: GATE 3 used as timebase if  $1 \le \mathbf{ctr} \le 5$  or GATE8 used as timebase if  $6 \le \mathbf{ctr} \le 10$
- 14: GATE 4 used as timebase if  $1 \le \mathbf{ctr} \le 5$  or GATE9 used as timebase if  $6 \le \mathbf{ctr} \le 10$ .
- 15: GATE 5 used as timebase if  $1 \le \mathbf{ctr} \le 5$  or GATE10 used as timebase if  $6 \le \mathbf{ctr} \le 10$ .

Set **timebase** to 0 to concatenate counters. Set **timebase** to 1 through 5 for the counter to use one of the five available internal signals. Set **timebase** to 6 through 15 (except 10 for the PC-TIO-10) to provide an external clock to the counter.

**period1** and **period2** specify the two periods making up the square wave to be generated. For TC toggled output type and positive output polarity, **period1** indicates the duration of the on-cycle (high-logic state) and **period2** indicates the duration of the off-cycle (low-logic state).

Range: 1 through 65,535.

# **Using This Function**

CTR\_Square sets up the counter to generate a square wave of duration and frequency determined by **period1**, **period2**, and **timebase**. If you specify no gating, the function initiates square wave generation; otherwise, counter operation is controlled by the gate input.

The total period of the square wave is determined by the following formula:

```
(period1 + period2) * (timebase period)
```

This implies that the frequency of the square wave is as follows:

```
1/(period1 + period2) * (timebase period)
```

The percent duty cycle of the square wave is determined by the following formula:

```
period 1/(period1 + period2) * 100\%
```

Figure 2-11 shows the timing of square wave generation for both TC toggled output and TC pulse output. For this example, **period1** = 3 and **period2** = 2. The output signals shown are positive polarity output signals.

When you use special gating (**gateMode** = 8), you can achieve gate-controlled pulse generation. When the gate input is high, NI-DAQ uses **period1** to generate the pulses. When the gate input is low, NI-DAQ uses **period2** to generate the pulses. If the output mode is TC Toggled, the result is two 50% duty square waves of difference frequencies. If the output mode is TC Pulse, the result is two pulse trains of different frequencies.

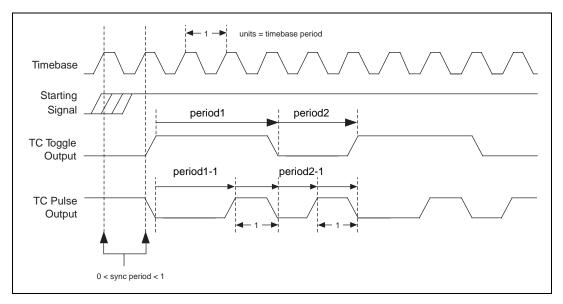



Figure 2-11. Square Wave Timing

# **Square Wave Generation Timing Considerations**

There is an uncertainty associated with the beginning of square wave generation due to counter synchronization. Square wave generation starts on the first timebase edge *after* NI-DAQ applies the starting signal. The time between receipt of the starting signal and the start of the square wave generation can be between 0 and 1 units of the timebase in duration.

You should not use edge gating with square wave generation. If you use edge gating, the waveform stops after **period1** expires and then continues for one total period (**period2** + **period1**) only after NI-DAQ applies another edge. For continuous square wave generation, use level or no gating.

# CTR\_State

#### **Format**

status = CTR\_State (deviceNumber, ctr, outState)

## **Purpose**

Returns the OUT logic level of the specified counter.

#### **Parameters**

### Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |
| ctr          | i16  | counter number                    |

### Output

| Name     | Туре | Description                                       |
|----------|------|---------------------------------------------------|
| outState | *i16 | returns the logic level of the counter OUT signal |

### **Parameter Discussion**

ctr is the counter number.

Range: 1 through 10 for a PC-TIO-10.

**outState** returns the logic level of the counter OUT signal. **outState** is either 0 or 1.

- 0: Indicates that OUT is at a low-logic state.
- 1: Indicates that OUT is at a high-logic state.



**Note** C Programmers—outState is a pass-by-address parameter.

# **Using This Function**

CTR\_State reads the logic state of the OUT signal of the specified counter and returns the state in **outState**. If the counter OUT driver is set to the high-impedance state, **outState** is indeterminate and can be either 0 or 1.

# CTR\_Stop

#### **Format**

status = CTR\_Stop (deviceNumber, ctr)

### **Purpose**

Suspends operation of the specified counter so that you can restart the counter operation.

#### **Parameters**

### Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |
| ctr          | i16  | counter number                    |

#### **Parameter Discussion**

ctr is the counter number.

Range: 1 through 10 for a PC-TIO-10.

# **Using This Function**

CTR\_Stop suspends the operation of the counter in such a way that the counter can be restarted by CTR\_Restart and continue in its operation. For example, if a counter is set up for frequency output, issuing CTR\_Stop causes the counter to stop generating a square wave, and CTR\_Restart allows it to resume. CTR\_Stop causes the counter output to remain at the state it was in when CTR\_Stop was issued.period



**Note** Because of hardware limitations, CTR\_Stop cannot stop a counter generating a square wave with **period** 1 of 1 and **period** 2 of 1.

# DAQ\_Check

#### **Format**

status = DAQ\_Check (deviceNumber, daqStopped, retrieved)

### **Purpose**

Checks whether the current DAQ operation is complete and returns the status and the number of samples acquired to that point.

#### **Parameters**

### Input

| Name         | Type | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |

### Output

| Name       | Туре | Description                                              |
|------------|------|----------------------------------------------------------|
| daqStopped | *i16 | indication of whether the data acquisition has completed |
| retrieved  | *u32 | progress of an acquisition                               |

#### Parameter Discussion

**dagStopped** returns an indication of whether the data acquisition has completed.

- 0: The DAO operation is not yet complete.
- 1: The DAQ operation has stopped. Either the buffer is full, or an error has occurred.

retrieved indicates the progress of an acquisition. The meaning of retrieved depends on whether pretrigger mode has been enabled (see DAQ\_StopTrigger\_Config). If pretrigger mode is disabled, retrieved returns the number of samples collected by the acquisition at the time of the call to DAQ\_Check. The value of retrieved increases until it equals the count indicated in the call that initiated the acquisition, at which time the acquisition terminates. However, if pretrigger mode is enabled, retrieved returns the offset of the position in your buffer where the next data point is placed when it is acquired. When the value of retrieved reaches count—1 and rolls over to 0, the acquisition begins to overwrite old data with new data. When NI-DAQ applies a signal to the stop trigger input, the acquisition collects an additional number of samples indicated by ptsAfterStoptrig in the call to DAQ\_StopTrigger\_Config and then terminates. When DAQ\_Check returns a status of 1, retrieved contains the offset of the oldest data point in the array (assuming that the acquisition has written to the entire buffer at least once). In pretrigger mode, DAQ\_Check

automatically rearranges the array upon completion of the acquisition so that the oldest data point is at the beginning of the array. Thus, **retrieved** always equals 0 upon completion of a pretrigger mode acquisition.



**Note** C Programmers—daqStopped and retrieved are pass-by-address parameters.

### **Using This Function**

DAQ\_Check checks the current background DAQ operation to determine whether it has completed and returns the number of samples acquired at the time that you called DAQ\_Check. If the operation is complete, DAQ\_Check sets **daqStopped** = 1. Otherwise, **daqStopped** is set to 0. Before DAQ\_Check returns **daqStopped** = 1, it calls DAQ\_Clear, allowing another Start call to execute immediately.

If DAQ\_Check returns an **overFlowError** or an **overRunError**, the DAQ operation is terminated; some A/D conversions were lost due to a sample rate that is too high (sample interval was too small). An **overFlowError** indicates that the A/D FIFO memory overflowed because the DAQ servicing operation was not able to keep up with sample rate. An **overRunError** indicates that the DAQ circuitry was not able to keep up with the sample rate. Before returning either of these error codes, DAQ\_Check calls DAQ\_Clear to terminate the operation and reinitialize the DAQ circuitry.

# DAQ\_Clear

#### **Format**

status = DAQ\_Clear (deviceNumber)

### **Purpose**

Cancels the current DAQ operation (both single-channel and multiple-channel scanned) and reinitializes the DAQ circuitry.

#### **Parameters**

### Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |

# **Using This Function**

DAQ\_Clear turns off any current DAQ operation (both single-channel and multiple-channel), cancels the background process that is handling the data acquisition, and clears any error flags set as a result of the data acquisition. NI-DAQ then reinitializes the DAQ circuitry so that NI-DAQ can start another data acquisition.



**Note** If your application calls DAQ\_Start, SCAN\_Start, or Lab\_ISCAN\_Start, always make sure that you call DAQ\_Clear before your application terminates and returns control to the operating system. Unpredictable behavior can result unless you make this call (either directly, or indirectly through DAQ\_Check, Lab\_ISCAN\_Check, or DAQ\_DB\_Transfer).

# DAQ\_Config

#### **Format**

status = DAQ\_Config (deviceNumber, startTrig, extConv)

### **Purpose**

Stores configuration information for subsequent DAQ operations.

#### **Parameters**

### Input

| Name         | Type | Description                                                                         |
|--------------|------|-------------------------------------------------------------------------------------|
| deviceNumber | i16  | assigned by configuration utility                                                   |
| startTrig    | i16  | determines whether the trigger to initiate data acquisition is generated externally |
| extConv      | i16  | selects A/D conversion clock source                                                 |

Chapter 2

#### **Parameter Discussion**

**startTrig** indicates whether the trigger to initiate DAQ sequences is generated externally.

- 0: Generate software trigger to start DAQ sequence (the default).
- 1: Wait for external trigger pulse at EXTTRIG of the Lab and 1200 Series devices to initiate DAQ sequence (not valid for 516 and LPM devices and the DAQCard-500/700).

**extConv** indicates whether the timing of A/D conversions during the DAQ sequence is controlled externally or internally with the sample-interval and/or scan-interval clocks.

- 0: Use onboard clock to control data acquisition sample-interval and scan-interval timing (the default).
- 1: Allow external clock to control sample-interval timing.
- 2: Allow external clock to control scan-interval timing (MIO, AI, and Lab and 1200 Series devices only).
- 3: Allow external control of sample-interval timing and scan-interval timing (Lab and 1200 Series devices only).



**Note** If you are using an E Series or DSA device, see the Select\_Signal function for information about the external timing signals.

### **Using This Function**

DAQ\_Config saves the parameters in the configuration table for future data acquisition. DAQ\_Start and SCAN\_Start use the configuration table to set the DAQ circuitry to the correct timing modes.

If both **startTrig** and **extConv** are 0, A/D conversions begin as soon as you call DAQ\_Start, SCAN\_Start, or Lab\_ISCAN\_Start. When **startTrig** is 1, A/D conversions do not begin until NI-DAQ receives an external trigger pulse. In the latter case, the Start call merely arms the device. If you are using all E Series devices, see the Select\_Signal function for information about the external timing signals. When the A/D conversions have begun (with the start trigger), the onboard counters control the timing of the conversions. When **extConv** is 1, the timing of A/D conversions is completely controlled by the signal applied at the EXTCONV\* input. Again, the Start call merely arms the device, and after you make this call, the device performs an A/D conversion every time NI-DAQ receives a pulse at the EXTCONV\* input. When **extConv** is 2, the device performs a multiple-channel scan each time the device receives an active low pulse at the COUTB1 signal (pin 43) on Lab and 1200 Series devices.

On the E Series, Lab, and 1200 Series devices, you can configure external start triggering and the external sample clock simultaneously.

#### ♦ Lab and 1200 Series devices only:

In most cases, you should not use external conversion pulses in scanning operations when you are using SCXI in Multiplexed mode. There is no way of masking conversions before the data acquisition begins, so any conversion pulses that occur before NI-DAQ triggers the acquisition will advance the SCXI channels.

#### ♦ Lab and 1200 Series devices only:

If the device is using an external timing clock for A/D conversions (**extConv** = 1), the first clock pulse after one of the three start calls—AI\_Setup, DAQ\_Start, or Lab\_ISCAN\_Start—is to activate the device for external timing. It does not generate a conversion. However, all subsequent clock pulses will generate conversions.

#### ♦ E Series devices only:

If you use this function with **startTrig** = 1, the device waits for an active low external pulse on the PFI0 pin to initiate the DAQ sequence. If you use this function with **extConv** = 1 or 3, the device uses active low pulses on the PFI2 pin for sample-interval timing. If you use this function with **extConv** = 2 or 3, the device uses active low pulses on the PFI7 pin for scan-interval timing. You can use the Select\_Signal function instead of this function to take advantage of the DAQ-STC signal routing and polarity selection features.



**Note** PCI-6110E and PCI-6111E only—The only allowed values for **extConv** are 0 and 2. The conversions occur simultaneously for all channels and are controlled by the scan interval.

The DSA devices cannot use externally controlled clocks, so **extConv** is ignored.

The default settings for DAQ modes are as follows:

**startTrig** = 0: DAQ sequences are initiated through software.

**extConv** = 0: Onboard clock is used to time A/D conversions.

If you want a DAQ timing configuration different from the default setting, you must call DAQ\_Config with the configuration you want before initiating any DAQ sequences. You need to call DAQ\_Config only when you change the DAQ configuration from the default setting.

To scan channels on an SCXI-1140 module using an external Track\*/Hold signal, you should call DAQ\_Config with **extConv** = 2 so that the Track\*/Hold signal of the module can control the scan interval timing during the acquisition.

The configuration information for the analog input circuitry is controlled by the AI\_Configure call. This configuration information also affects data acquisition.

# DAQ\_DB\_Config

#### **Format**

status = DAQ\_DB\_Config (deviceNumber, DBmode)

### **Purpose**

Enables or disables double-buffered DAQ operations.

### **Parameters**

### Input

| Name         | Type | Description                            |
|--------------|------|----------------------------------------|
| deviceNumber | i16  | assigned by configuration utility      |
| DBmode       | i16  | enable or disable double-buffered mode |

#### **Parameter Discussion**

**DBmode** indicates whether to enable or disable the double-buffered mode of acquisition.

- 0: Disable double buffering (default).
- 1: Enable double buffering.

# **Using This Function**

Double-buffered data acquisition cyclically fills a buffer with acquired data. The buffer is divided into two equal halves so that NI-DAQ can save data from one half while filling the other half. This mechanism makes it necessary to alternately save both halves of the buffer so that NI-DAQ does not overwrite data in the buffer before saving the data. Use the DAQ\_DB\_Transfer function to save the data as NI-DAQ acquires it. For additional information, see Chapter 5, NI-DAQ Double Buffering, of the NI-DAQ User Manual for PC Compatibles, for more information.

# DAQ\_DB\_HalfReady

#### **Format**

status = DAQ\_DB\_HalfReady (deviceNumber, halfReady, daqStopped)

## **Purpose**

Checks whether the next half buffer of data is available during a double-buffered data acquisition. You can use DAQ\_DB\_HalfReady to avoid the waiting period that can occur because the double-buffered transfer function (DAQ\_DB\_Transfer) waits until the data is ready before retrieving and returning it.

Chapter 2

#### **Parameters**

### Input

| Name         | Type | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |

# Output

| Name       | Туре | Description                                       |
|------------|------|---------------------------------------------------|
| halfReady  | *i16 | whether the next half buffer of data is available |
| daqStopped | *i16 | whether the data acquisition has completed        |

#### Parameter Discussion

halfReady indicates whether the next half buffer of data is available.

- 0: Data is not yet available.
- 1: Use DAQ\_DB\_Transfer to retrieve the data immediately.

**dagstopped** returns an indication of whether the data acquisition has completed.

- 0: The DAQ operation is still running.
- 1: The DAQ operation is complete (or halted due to an error).



**Note** C Programmers—**halfReady** and **daqStopped** are pass-by-address parameters.

## **Using This Function**

Double-buffered data acquisition cyclically fills a buffer with acquired data. The buffer is divided into two equal halves so that NI-DAQ can save data from one half while filling the other half. This mechanism makes it necessary to alternately save both halves of the buffer so that NI-DAQ does not overwrite data in the buffer before saving the data. Use the DAQ\_DB\_Transfer function to save the data as NI-DAQ acquires it. This function, when called, waits for the data to become available before retrieving it and returning. During slower paced acquisitions this waiting period can be significant. You can use DAQ\_DB\_HalfReady to ensure that the transfer function is called only when the data is already available.

# DAQ\_DB\_Transfer

#### **Format**

status = DAQ\_DB\_Transfer (deviceNumber, halfBuffer, ptsTfr, daqStopped)

### **Purpose**

Transfers half of the data from the buffer being used for double-buffered data acquisition to another buffer, which is passed to the function, and waits until the data to be transferred is available before returning. You can execute DAQ\_DB\_Transfer repeatedly to return sequential half buffers of the data.

#### **Parameters**

### Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |

### Input/Output

| Name       | Туре  | Description                                          |
|------------|-------|------------------------------------------------------|
| halfBuffer | [i16] | integer array to which the data is to be transferred |

# Output

| Name       | Type | Description                                               |
|------------|------|-----------------------------------------------------------|
| ptsTfr     | u32  | number of points transferred                              |
| daqStopped | i16  | indicates the completion of a pretrigger mode acquisition |

### **Parameter Discussion**

**halfBuffer** is an integer array. The size of the array must be at least half the size of the circular buffer being used for double-buffered data acquisition.

ptsTfr is the number of points transferred to halfBuffer. This value is always equal to half the number of samples specified in DAQ\_Start, SCAN\_Start, or Lab\_ISCAN\_Start unless the acquisition has not yet begun, or the acquisition stopped while in pretrigger mode. In the former case, until NI-DAQ applies an external start trigger, ptsTfr is zero. In the latter case (pretrigger mode), the acquisition can stop at any point in the circular buffer after acquiring the specified number of samples after the board receives a pulse at stop trigger input, the

EXTTRIG pin of Lab and 1200 Series devices. If you are using all E Series devices, see the Select\_Signal function for information about the external timing signals. Thus, after the acquisition has stopped, the last transfer of data to **halfBuffer** contains the number of valid points from the half of the circular buffer where acquisition stopped.

**daqStopped** is a valid output parameter only if pretrigger mode acquisition is in progress. This parameter indicates the completion of a pretrigger mode acquisition by returning a one (it returns zero otherwise). A one indicates that the acquisition has stopped after taking the specified number of samples following the occurrence of a stop trigger, and that NI-DAQ has transferred the last piece of data in the circular buffer to **halfBuffer**. The number of data points transferred to **halfBuffer**, as always, is equal to **ptsTfr**.



**Note** C Programmers—**ptsTfr** and **daqStopped** must be passed by reference.

### **Using this Function**

Double-buffered data acquisition cyclically fills a buffer with acquired data. The circular buffer is divided into two equal halves so that NI-DAQ can save data from one half while filling the other half. Through the use of a circular buffer, you can collect an unlimited amount of data without requiring an unlimited amount of memory. Double-buffered data acquisition is useful for applications such as writing data to disk and real-time display of data. NI-DAQ can use double-buffered data acquisition for both single-channel and multiple-channel scanned data acquisition. Unless pretrigger mode is in use, you should call DAQ\_Clear to stop the continuous cyclical double-buffered acquisition started by DAQ\_Start, SCAN\_Start, or Lab\_ISCAN\_Start.

DAQ\_DB\_Transfer saves to **halfBuffer** one half of the data from the buffer being used for acquisition. An **overWriteBeforeCopy** warning is returned by DAQ\_DB\_Transfer if NI-DAQ has overwritten unretrieved data in the circular buffer. Notice that NI-DAQ transfers the data, even though it returns the warning. Your application might initiate a double-buffered acquisition and then wait for some condition to be satisfied before beginning retrieval of the data. The first call to the DB\_Transfer function might return the warning because the circular buffer might have wrapped around at least once since the acquisition started. If subsequent DAQ\_DB\_Transfer calls keep pace with the acquisition, no further **overWriteBeforeCopy** warnings should occur.

DAQ\_DB\_Transfer returns an overwrite error if NI-DAQ overwrites data in the half of the circular buffer being copied to **halfBuffer** during the transfer. When this error occurs, the data in **halfBuffer** might be corrupted. Use DAQ\_Monitor for very large buffers.

# DAQ\_Monitor

#### **Format**

status = DAQ\_Monitor (deviceNumber, channel, sequential, numPts, monitorBuffer, newestPtIndex, daqStopped)

# **Purpose**

Returns data from an asynchronous data acquisition in progress. During a multiple-channel acquisition, you can retrieve data from a single channel or from all channels being scanned. An oldest/newest mode provides for return of sequential (oldest) blocks of data or return of the most recently acquired (newest) blocks of data.

#### **Parameters**

### Input

| Name         | Туре | Description                                                            |
|--------------|------|------------------------------------------------------------------------|
| deviceNumber | i16  | assigned by configuration utility                                      |
| channel      | i16  | number of the channel                                                  |
| sequential   | i16  | enables or disables the return of consecutive or oldest blocks of data |
| numPts       | u32  | number of data points you want to retrieve                             |

# Output

| Name          | Type  | Description                                                     |
|---------------|-------|-----------------------------------------------------------------|
| monitorBuffer | [i16] | destination buffer for the data                                 |
| newestPtIndex | *u32  | offset into the acquisition buffer of the newest point returned |
| daqStopped    | *i16  | indicates whether the data acquisition has completed            |

### **Parameter Discussion**

**channel** is the number of the channel you want to examine. You can choose to set **channel** to a value of -1 to indicate that you want to examine data from all channels being scanned. If **channel** is not equal to -1, **channel** must be equal to the channel selected in DAQ\_Start, equal to one of the channels selected in SCAN\_Setup, or equal to one of the channels implied

in Lab\_ISCAN\_Start. If you are using an AMUX-64T, **channel** can be equal to any one of the AMUX-64T channels.

Range: -1 for data from all channels being sampled.

n where n is one of the channels being sampled.

**sequential** is a flag that enables or disables the return of consecutive or oldest blocks of data from the acquisition buffer. A call to DAQ\_Monitor with the value of **sequential** equal to one returns a block of data that begins where the last sequential call to DAQ\_Monitor left off. A call to DAQ\_Monitor with **sequential** equal to zero returns the most recent block of data available.

- 0: Most recent data.
- 1: Consecutive data.

**numPts** is the number of data points you want to retrieve from the buffer being used by the acquisition operation. If the **channel** parameter is equal to -1, **numPts** must be an integer multiple of the number of channels contained in the scan sequence. If you are using one or more AMUX-64T devices, remember that the actual number of channels scanned is equal to the value of the **numChans** parameter you selected in SCAN\_Setup, multiplied by the number of AMUX-64T devices, multiplied by four.

Range: (if **channel** equals -1) one to the value of **count** in the DAQ\_Start, SCAN\_Start, or Lab ISCAN Start call.

(if **channel** is not equal to 1) one to the number of points per channel that the acquisition buffer can hold.

**monitorBuffer** is the destination buffer for the data. It is an integer array. **monitorBuffer** must be at least big enough to hold **numPts** worth of data. Upon the return of DAQ\_Monitor, **monitorBuffer** contains a *snapshot* of a portion of the acquisition buffer.

**newestPtIndex** is the offset into the acquisition buffer of the newest point returned by DAQ\_Monitor. When the value of the **sequential** flag is 0, **newestPtIndex** is useful in determining whether you are seeing the same data over and over again. If DAQ\_buffer is the name of the buffer selected in the DAQ\_Start call, for example, **monitorBuffer[numPts** -1] = DAQ\_buffer[**newestPtIndex**], if DAQ\_buffer is zero based.

daqStopped returns an indication of whether the data acquisition has completed.

- 0: The DAQ operation is not yet complete.
- 1: The DAQ operation has completed (or halted due to an error).



**Note** C Programmers—newestPtIndex and daqStopped are pass-by-address parameters.

### **Using This Function**

DAQ\_Monitor is intended to return small blocks of data from a background acquisition operation. This is especially useful when you have put the acquisition in a circular mode by enabling either the double-buffered or pretrigger modes. The operation is not disturbed; NI-DAQ only reads data from the buffer being used by the acquisition. If the amount of data requested is not yet available, DAQ\_Monitor returns the appropriate error code. Possible uses for DAQ\_Monitor include deciding when to halt an acquisition based on a level, slope, or peak. If you are using DAQ\_Monitor to retrieve sequential data (during a circular acquisition) and NI-DAQ overwrites a block of data before it can copy the data, NI-DAQ returns an overWriteError warning. DAQ\_Monitor then restarts sequential retrieval with the most recently acquired block of data. DAQ\_Monitor is also useful for returning data from huge buffers because it is not restricted to one-half of the circular buffer size, unlike DAQ\_DB\_Transfer.

Chapter 2

If NI-DAQ overwrites a block of data as it is copied to **monitorBuffer**, NI-DAQ returns the **overWriteError** error. The data in **monitorBuffer** might be corrupted if NI-DAQ returns this error.

# DAQ\_Op

#### **Format**

status = DAQ\_Op (deviceNumber, chan, gain, buffer, count, sampleRate)

### **Purpose**

Performs a synchronous, single-channel DAQ operation. DAQ\_Op does not return until NI-DAQ has acquired all the data or an acquisition error has occurred.

#### **Parameters**

### Input

| Name         | Туре | Description                           |
|--------------|------|---------------------------------------|
| deviceNumber | i16  | assigned by configuration utility     |
| chan         | i16  | analog input channel number           |
| gain         | i16  | gain setting to be used               |
| count        | u32  | number of samples to be acquired      |
| sampleRate   | f64  | desired sample rate in units of pts/s |

# Input/Output

| Name   | Type  | Description                 |
|--------|-------|-----------------------------|
| buffer | [i16] | conversion samples returned |

#### Parameter Discussion

**chan** is the analog input channel number. If you are using SCXI, you must use the appropriate analog input channel on the DAQ device that corresponds to the SCXI channel you want. Select the SCXI channel using SCXI\_Single\_Chan\_Setup before calling this function. Refer to the *NI-DAQ User Manual for PC Compatibles* for more information on SCXI channel assignments.

Range: See Table B-1, Valid Analog Input Channel Settings, in Appendix B, Analog Input Channel, Gain Settings, and Voltage Calculation.

gain is the gain setting to be used for that channel. This gain setting applies only to the DAQ device; if you are using SCXI, you must establish any gain you want at the SCXI module by setting jumpers on the module or by calling SCXI\_Set\_Gain. Refer to Appendix B, *Analog Input Channel, Gain Settings, and Voltage Calculation*, for valid gain settings. If you use an

invalid gain, NI-DAQ returns an error. NI-DAQ ignores **gain** for 516 and LPM devices and the DAQCard-500/700.

**buffer** is an integer array. **buffer** has a length equal to or greater than **count**. When DAQ\_Op returns with an error number equal to zero, **buffer** contains the acquired data.

**count** is the number of samples to be acquired (that is, the number of A/D conversions to be performed).

Range: 3 through  $2^{32} - 1$  (except for the Lab and 1200 Series and E Series devices).

3 through 65,535 (Lab and 1200 Series devices).

2 through 2<sup>24</sup> (E Series devices).

2 through  $2^{24} - 3$  (PCI-6110E and PCI-6111E) requires an even number of samples.

2 through  $2^{24} - 1$  (445*X* devices).

2 through  $2^{32} - 1$  (455*X* devices).

**sampleRate** is the sample rate you want in, units of pts/s.

Range: Roughly 0.00153 pts/s through 5,000,000 pts/s. The maximum rate depends on

the type of device.



**Note** If you are using an SCXI-1200 with remote SCXI, the maximum rate depends on the baud rate setting and count. Refer to the *SCXI-1200 User Manual* for more details.

### **Using This Function**

DAQ\_Op initiates a synchronous process of acquiring A/D conversion samples and storing them in a buffer. DAQ\_Op does not return control to your application until NI-DAQ acquires all the samples you want (or until an acquisition error occurs). When you are using posttrigger mode (with pretrigger mode disabled), the process stores **count** A/D conversions in the buffer and ignores any subsequent conversions.



**Note** If you have selected external start triggering of the DAQ operation, a low-to-high edge at the EXTTRIG input of the Lab and 1200 Series devices initiates the DAQ operation. If you are using an E Series device or DSA device, you need to apply a trigger that you select through the Select\_Signal or DAQ\_Config functions to initiate data acquisition. Be aware that if you do not apply the start trigger, DAQ\_Op does not return control to your application. Otherwise, DAQ\_Op issues a software trigger to initiate the DAQ operation.

If you have enabled pretrigger mode, the sample counter does not begin counting acquisitions until you apply a signal at the stop trigger input. Until you apply this signal, the acquisition remains in a cyclical mode, continually overwriting old data in the buffer with new data. Again, if you do not apply the stop trigger, DAQ\_Op does not return control to your application.

In any case, you can use Timeout\_Config to establish a maximum length of time for DAQ\_Op to execute.

**DAQ** Rate

### **Format**

status = DAQ\_Rate (rate, units, timebase, sampleInterval)

# **Purpose**

Converts a DAQ rate into the timebase and sample-interval values needed to produce the rate you want.

Chapter 2

#### **Parameters**

### Input

| Name  | Туре | Description                  |
|-------|------|------------------------------|
| rate  | f64  | desired DAQ rate             |
| units | i16  | pts/s or s/pt (see CTR_Rate) |

### Output

| Name           | Туре | Description                                                              |
|----------------|------|--------------------------------------------------------------------------|
| timebase       | *i16 | onboard source signal used                                               |
| sampleInterval | *u16 | number of timebase units that elapse between consecutive A/D conversions |

#### **Parameter Discussion**

**rate** is the DAQ rate you want. The units in which **rate** is expressed are either points per second (pts/s) or seconds per point (s/pt), depending on the value of the **units** parameter.

Range: Roughly 0.00153 pts/s through 5,000,000 pts/s or 655 s/pt through 0.000001 s/pt.

units indicates the units used to express rate.

0: points per second.

1: seconds per point.

**timebase** is a code representing the resolution of the onboard clock signal that the device uses to produce the acquisition rate you want. You can input the value returned by **timebase** directly to DAQ\_Start, Lab\_ISCAN\_Start, or SCAN\_Start. **timebase** has the following possible values:

- -3: 20 MHz clock used as the timebase (50 ns) (E Series only).
- −1: 200 ns (E Series devices only).
  - 1: 1 µs.

- 2: 10 μs.
- 3: 100 µs.
- 4: 1 ms.
- 5: 10 ms.

**sampleInterval** is the number of timebase units that elapse between consecutive A/D conversions. The combination of the timebase resolution value and the **sampleInterval** produces the DAQ rate you want.

Range: 2 through 65,535.



**Note** C Programmers—**timebase** and **sampleInterval** are pass-by-address parameters.

# **Using This Function**

DAQ\_Rate produces timebase and sample-interval values to closely match the DAQ rate you want. To calculate the actual acquisition rate produced by these values, first determine the clock resolution that corresponds to the value **timebase** returns. Then use the appropriate formula, depending on the value specified for units.

```
units = 0 (pts/s):
    actual rate = 1/(clock resolution * sampleInterval)
units = 1 (s/pt):
    actual rate = clock resolution * sampleInterval
```

# **DAQ Set Clock**

#### **Format**

status = DAQ\_Set\_Clock (deviceNumber, group, whichClock, desiredRate, units, actualRate)

Chapter 2

# **Purpose**

Sets the scan rate for a group of channels (DSA devices only).

### Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |
| whichClock   | u32  | only scan clock supported         |
| desiredRate  | f64  | desired rate in units             |
| units        | u32  | ticks/second or seconds/tick      |

### Output

| Name       | Туре | Description          |
|------------|------|----------------------|
| actualRate | *f64 | actual rate in units |

### **Parameter Discussion**

which Clock indicates the type of clock.

0: scan clock.

**desiredRate** is the rate at which you want data points to be sampled by the ADC(s).

**units** determines how **desiredRate** and **actualRate** are interpreted.

- 0: points per second.
- 1: seconds per point.

**actualRate** is the rate at which the ADCs produce samples. The capabilities of your device will determine how closely **actualRate** matches **desiredRate**. The DSA devices use the same base clock for both DAQ/SCAN and WFM operations so the rates available for a DAQ/SCAN will be restricted if a WFM operation is already in progress.



**Note** C programmers—actualRate is a pass-by-address parameter.

# **Using This Function**

DAQ\_Set\_Clock sets the specified clock rate for the next acquisition operation. Be sure to call DAQ\_Set\_Clock before DAQ\_Start or SCAN\_Start. When calling those functions, the **timebase** and **interval** parameters will be ignored.

# DAQ\_Start

#### **Format**

status = DAQ\_Start (deviceNumber, chan, gain, buffer, count, timebase, sampInterval)

### **Purpose**

Initiates an asynchronous, single-channel DAQ operation and stores its input in an array.

### Input

| Name         | Type | Description                                                      |
|--------------|------|------------------------------------------------------------------|
| deviceNumber | i16  | assigned by configuration utility                                |
| chan         | i16  | analog input channel number                                      |
| gain         | i16  | gain setting                                                     |
| count        | u32  | number of samples that <b>buffer</b> can hold at any given time. |
| timebase     | i16  | timebase value                                                   |
| sampInterval | u16  | sample interval                                                  |

### Input/Output

| Name   | Туре  | Description                 |
|--------|-------|-----------------------------|
| buffer | [i16] | conversion samples returned |

### **Parameter Discussion**

**chan** is the analog input channel number. If you are using SCXI, you must use the appropriate analog input channel on the DAQ device that corresponds to the SCXI channel you want. Select the SCXI channel using SCXI\_Single\_Chan\_Setup before calling this function. Refer to the *NI-DAQ User Manual for PC Compatibles* for more information on SCXI channel assignments.

Range: See Table B-1, Valid Analog Input Channel Settings, in Appendix B, Analog Input Channel, Gain Settings, and Voltage Calculation.

gain is the gain setting to be used for that channel. This gain setting applies only to the DAQ device; if you are using SCXI, you must establish any gain you want at the SCXI module either by setting jumpers on the module or by calling SCXI\_Set\_Gain. Refer to Appendix B, Analog Input Channel, Gain Settings, and Voltage Calculation, for valid gain settings. If you

use invalid gain settings, NI-DAQ returns an error. NI-DAQ ignores **gain** for the 516 and LPM devices and DAQCard-500/700.

**buffer** is an integer array. **buffer** must have a length equal to or greater than **count**. The elements of **buffer** are the results of each A/D conversion in the DAQ operation. This buffer is often referred to as the acquisition buffer (or circular buffer when double-buffered mode is enabled) elsewhere in this manual.

For DSA devices, **buffer** should be an array of type i32. These devices return the data in a 32-bit format in which the data bits are in the most significant bits.

**count** is the number of unique samples that **buffer** can hold at any given time. In a single-buffered acquisition, **count** actually corresponds to the size (in number of samples) that the DAQ device will acquire. In a double-buffered acquisition, **count** corresponds to the size (in number of samples) of **buffer** (acquisition buffer) that will be filled up in a circular fashion. It must also be even.

Range:

- 3 through  $2^{32} 1$  (except Lab and 1200 Series devices that are not enabled for doubled-buffered mode and the E Series devices).
- 3 through 65,535 (Lab and 1200 Series devices not enabled for double-buffered mode).
- 2 through  $2^{24} 1$  (E Series devices).
- 2 through  $2^{24} 4$  (PCI-6110E and PCI-6111E). **count** must always be EVEN.
- 2 through  $2^{24} 1$  (445*X* devices).
- 2 through  $2^{32} 1$  (455*X* devices).

**timebase** is the timebase, or resolution, to be used for the sample-interval counter. **timebase** has the following possible values:

- -3: 20 MHz clock used as a timebase (50 ns) (E Series only).
- −1: 5 MHz clock used as timebase (200 ns resolution).
  - 0: External clock used as timebase (connect your own timebase frequency to the internal sample-interval counter via the default PFI8 input for E Series devices).
  - 1: 1 MHz clock used as timebase (1 µs resolution).
  - 2: 100 kHz clock used as timebase (10 µs resolution).
  - 3: 10 kHz clock used as timebase (100 µs resolution).
  - 4: 1 kHz clock used as timebase (1 ms resolution).
  - 5: 100 Hz clock used as timebase (10 ms resolution).

On E Series devices, if you use this function with the timebase set to 0, you must call the function <code>Select\_Signal</code> with <code>signal</code> set to <code>ND\_IN\_SCAN\_CLOCK\_TIMEBASE</code> (not <code>ND\_IN\_CHANNEL\_CLOCK\_TIMEBASE</code>), and <code>source</code> set to a value other than <code>ND\_INTERNAL\_20\_MHZ</code> and <code>ND\_INTERNAL\_100\_KHZ</code> before calling <code>DAQ\_Start</code> with timebase set to 0; otherwise, <code>DAQ\_Start</code> selects low-to-high transitions on the PFI 8 I/O connector pin as your external timebase.

Refer to the Select\_Signal function for further details about using the timebase with E Series devices.

If you use external conversion pulses, NI-DAQ ignores the **timebase** parameter and you can set it to any value.

For DSA devices, **timebase** is ignored. Use DAQ\_Set\_Clock to set the sampling rate.

**sampInterval** indicates the length of the sample interval (that is, the amount of time to elapse between each A/D conversion).

Range: 2 through 65,535.

The sample interval is a function of the timebase resolution. NI-DAQ determines the actual sample interval in seconds using the following formula:

sampInterval \* (timebase resolution)

where the timebase resolution for each value of **timebase** is given above. For example, if sampInterval = 25 and timebase = 2, the sample interval is  $25 * 10 \, \mu s = 250 \, \mu s$ . If you use external conversion pulses, NI-DAQ ignores the sampInterval parameter and you can set it to any value.

For DSA devices, sampInterval is ignored. Use DAQ\_Set\_Clock to set the sampling rate.



**Note** If you are using an SCXI-1200 with remote SCXI, the maximum rate depends on the baud rate setting and count. Refer to the SCXI-1200 User Manual for more details.

# **Using This Function**

DAQ\_Start configures the analog input multiplexer and gain circuitry as indicated by **chan** and **gain**. If external sample-interval timing has not been indicated by a DAQ\_Config call, the function sets the sample-interval counter to the specified **sampInterval** and **timebase**. If you have indicated external sample-interval timing, the DAQ circuitry relies on pulses received on the external conversion signal EXTCONV\* input to initiate individual A/D conversions. The sample counter is set up to count the number of samples and to stop the DAQ process when NI-DAQ has acquired **count** samples.

DAQ\_Start initializes a background process to handle storing of A/D conversion samples into the buffer as NI-DAQ acquires the conversions. When you use posttrigger mode (with pretrigger mode disabled), the process stores up to **count** A/D conversions in the buffer and ignores any subsequent conversions. If a call to DAQ\_Check returns **status** = 1, the samples are available and NI-DAQ terminates the DAQ process. In addition, a call to DAQ\_Clear terminates the background DAQ process and enables a subsequent call to DAQ\_Start. Notice that if DAQ\_Check returns **daqStopped** = 1 or an error code of **overRunError** or **overFlowError**, the process is automatically terminated and there is no need to call DAQ\_Clear.



**Note** You need to apply a trigger that you select through the Select\_Signal or DAQ\_Config functions to initiate data acquisition.

If you select external start triggering for the DAQ operation, a low-to-high edge at the EXTTRIG input of Lab and 1200 Series devices initiates the DAQ operation after the DAQ\_Start call is complete. If you are using an E Series or DSA device, you need to apply a trigger that you select through the Select\_Signal or DAQ\_Config functions to initiate data acquisition. Otherwise, DAQ\_Start issues a software trigger to initiate the DAQ operation before returning.

If you enable pretrigger mode, the sample counter does not begin counting acquisitions until a signal is applied at the stop trigger input. Until this signal is applied, the acquisition remains in a cyclical mode, continually overwriting old data in the buffer with new data.



**Note** If your application calls DAQ\_Start, SCAN\_Start, or Lab\_ISCAN\_Start, always make sure that you call DAQ\_Clear before your application terminates and returns control to the operating system. Unpredictable behavior can result unless you make this call (either directly, or indirectly through DAQ\_Check or DAQ\_DB\_Transfer).

# DAQ StopTrigger Config

#### Format

status = DAQ\_StopTrigger\_Config (deviceNumber, stopTrig, ptsAfterStoptrig)

### **Purpose**

Enables the pretrigger mode of data acquisition and indicates the number of data points to acquire after the stop trigger pulse is applied at the EXTTRIG input of Lab and 1200 Series devices; or the PFI1 pin of an E Series device. If you are using an E Series device, see the Select\_Signal description for information about the external timing signals.

Chapter 2

#### **Parameters**

### Input

| Name             | Туре | Description                                   |
|------------------|------|-----------------------------------------------|
| deviceNumber     | i16  | assigned by configuration utility             |
| stopTrig         | i16  | enable or disable the pretriggered mode       |
| ptsAfterStoptrig | u32  | number of points to acquire after the trigger |

#### **Parameter Discussion**

**stopTrig** indicates whether to enable or disable the pretriggered mode of data acquisition.

- 0: Disable pretrigger (the default).
- 1: Enable pretrigger.

**ptsAfterStoptrig** is the number of data points to acquire after the trigger. This parameter is valid only if **stopTrig** equals 1. For a multiple channel scanned acquisition, **ptsAfterStoptrig** must be an integer multiple of the number of channels scanned.

Range:

3 through *count*, where *count* is the value of the **count** parameter in the Start call used to start the acquisition. For Lab and 1200 Series devices, the maximum is always 65,535. For an E Series device or DSA device, the range is 2 through **count**. Additionally for E Series devices, the number of scans acquired after the stop trigger must be at least 2. The number of scans is equal to the **count** divided by the total number of channels scanned.

# **Using This Function**

Calling DAQ\_StopTrigger\_Config with the **stopTrig** parameter set to 1 causes any subsequent Start call to initiate a cyclical mode data acquisition. In this mode, NI-DAQ writes data continually into your buffer, overwriting data at the beginning of the buffer when NI-DAQ has filled the entire buffer. You can use DAQ\_Check or Lab\_ISCAN\_Check in this situation to determine where NI-DAQ is currently depositing data in the buffer. When a pulse

is applied at the EXTTRIG input of Lab and 1200 Series devices, NI-DAQ acquires an additional number of data points specified by **ptsAfterStoptrig** before the acquisition terminates. DAO Check or Lab ISCAN Check rearranges the data into chronological order (from oldest to newest) and returns with the status parameters equal to one when called after termination.

Calling DAQ\_StopTrigger\_Config with stopTrig set to 0 returns the acquisition mode to its default, acyclical setting.

(E Series devices only) If you use this function with stopTrig = 1, the device uses an active high signal from the PFI1 pin as the stop trigger. After calling this function, you can use the Select\_Signal function to take advantage of the DAQ-STC signal routing and polarity selection features.

# DAQ to Disk

#### **Format**

status = DAQ\_to\_Disk (deviceNumber, chan, gain, filename, count, sampleRate, concat)

### **Purpose**

Performs a synchronous, single-channel DAQ operation and saves the acquired data in a disk file. DAQ\_to\_Disk does not return until NI-DAQ has acquired and saved all the data or an acquisition error has occurred.

#### **Parameters**

### Input

| Name         | Туре | Description                               |
|--------------|------|-------------------------------------------|
| deviceNumber | i16  | assigned by configuration utility         |
| chan         | i16  | analog input channel number               |
| gain         | i16  | gain setting                              |
| filename     | STR  | name of data file to be created           |
| count        | u32  | number of samples to be acquired          |
| sampleRate   | f64  | rate in units of pts/s                    |
| concat       | i16  | enables concatenation to an existing file |

#### **Parameter Discussion**

chan is the analog input channel number. If you are using SCXI, you must use the appropriate analog input channel on the DAQ device that corresponds to the SCXI channel you want. Select the SCXI channel using SCXI\_Single\_Chan\_Setup before calling this function. Refer to the NI-DAQ User Manual for PC Compatibles for more information on SCXI channel assignments.

Range: See Table B-1, Valid Analog Input Channel Settings, in Appendix B, Analog Input Channel, Gain Settings, and Voltage Calculation.

gain is the gain setting to be used for that channel. This gain setting applies only to the DAQ device; if SCXI is used, you must establish any gain at the SCXI module either by setting jumpers on the module or by calling SCXI\_Set\_Gain. Refer to Appendix B, *Analog Input Channel, Gain Settings, and Voltage Calculation*, for valid gain settings. If you use invalid gain settings, NI-DAQ returns an error. NI-DAQ ignores gain for 516 and LPM devices and the DAQCard-500/700.

**count** is the number of samples to be acquired (that is, the number of A/D conversions to be performed). The length of your data file in bytes should be exactly twice the value of **count** upon completion of the acquisition. If you have previously enabled pretrigger mode (by a call to DAQ\_StopTrigger\_Config), NI-DAQ ignores the **count** parameter.

Range: 3 through  $2^{32} - 1$  (except the E Series devices).

2 through 2<sup>24</sup> (E Series devices).

2 through  $2^{24} - 3$  (PCI-6110E and PCI-6111E), **count** must be EVEN.

2 through  $2^{24}$  (445*X* devices). 2 through  $2^{32} - 1$  (455*X* devices).

sampleRate is the sample rate you want in units of points per second.

Range: Roughly 0.00153 pts/s through 5,000,000 pts/s. The maximum range varies

according to the type of device you have and the speed and degree of

fragmentation of your disk storage device.



**Note** If you are using an SCXI-1200 with remote SCXI, the maximum rate depends on the baud rate setting and count. Refer to the *SCXI-1200 User Manual* for more details.

**concat** enables concatenation of data to an existing file. Regardless of the value of **concat**, if the file does not exist, it is created.

0: Overwrite file if it exists.

1: Concatenate new data to an existing file.

# **Using This Function**

DAQ\_to\_Disk initiates a synchronous process of acquiring A/D conversion samples and storing them in a disk file. Data is written to disk in 16-bit binary format, with the lower byte first (little endian). DAQ\_to\_Disk does not return control to your application until NI-DAQ acquires and saves all the samples you want (or until an acquisition error occurs).



Note If you select external start triggering for the DAQ operation, a low-to-high edge at the EXTTRIG input of Lab and 1200 Series devices initiates the DAQ operation. If you are using an E Series device, you need to apply a trigger that you select through the Select\_Signal or DAQ\_Config functions to initiate data acquisition. If you are using E Series devices, see the Select\_Signal function for information about the external timing signals. Be aware that if you do not apply the start trigger, DAQ\_to\_Disk does not return control to your application. Otherwise, DAQ\_to\_Disk issues a software trigger to initiate the DAQ operation.

If you enable pretrigger mode, the sample counter does not begin counting acquisitions until you apply a signal at the stop trigger input. Until you apply this signal, the acquisition continues to write data into the disk file. NI-DAQ ignores the value of the **count** parameter when you enable pretrigger mode. If the stop trigger is not applied, DAQ\_to\_Disk eventually returns control to your application because, you eventually run out of disk space.

In any case, you can use Timeout\_Config to establish a maximum length of time for DAQ\_to\_Disk to execute.

# **DAQ VScale**

#### **Format**

status = DAQ\_VScale (deviceNumber, chan, gain, gainAdjust, offset, count, binArray, voltArray)

# **Purpose**

Converts the values of an array of acquired binary data and the gain setting for that data to actual input voltages measured.

#### **Parameters**

### Input

| Name         | Туре  | Description                               |
|--------------|-------|-------------------------------------------|
| deviceNumber | i16   | assigned by configuration utility         |
| chan         | i16   | channel on which binary reading was taken |
| gain         | i16   | gain setting                              |
| gainAdjust   | f64   | multiplying factor to adjust gain         |
| offset       | f64   | binary offset present in reading          |
| count        | u32   | length of binArray and voltArray          |
| binArray     | [i16] | acquired binary data                      |

# Output

| Name      | Type  | Description                      |
|-----------|-------|----------------------------------|
| voltArray | [f64] | double-precision values returned |

### **Parameter Discussion**

**chan** is the onboard channel or AMUX channel on which the binary data was acquired. For devices other than the E Series devices and DSA devices, this parameter is ignored because the scaling calculation is the same for all of the channels. However, you are encouraged to pass the correct channel number.

gain is the gain setting at which NI-DAQ acquired the data in **binArray**. If you used SCXI to take the reading, this gain parameter should be the product of the gain on the SCXI module channel and the gain used by the DAQ device.

**gainAdjust** is the multiplying factor to adjust the gain. Refer to Appendix B, *Analog Input Channel, Gain Settings, and Voltage Calculation*, for the procedure for determining **gainAdjust**. If you do not want to do any gain adjustment, (for example, the ideal gain as specified by the parameter **gain**) you must set **gainAdjust** to 1.

**offset** is the binary offset that needs to be subtracted from **reading**. Refer to Appendix B, *Analog Input Channel, Gain Settings, and Voltage Calculation*, for the procedure for determining offset. If you do not want to do any offset compensation, **offset** must be set to 0. The data type is double to allow for offset fractional least significant bits (LSB). For example, you could use DAQ\_Op to acquire many samples from a grounded input channel and average them to obtain the offset.

**binArray** is an array of acquired binary data.

For DSA devices, **binArray** should be an array of i32.

**voltArray** is an array of double-precision values returned by DAQ\_VScale and is the voltage representation of **binArray**.

# **Using This Function**

Refer to Appendix B, *Analog Input Channel, Gain Settings, and Voltage Calculation*, for the formula used by DAQ\_VScale to calculate voltage from binary reading.

# DIG\_Block\_Check

#### **Format**

status = DIG\_Block\_Check (deviceNumber, group, remaining)

## **Purpose**

Returns the number of items remaining to be transferred after a DIG\_Block\_In or DIG\_Block\_Out call.

#### **Parameters**

### Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |
| group        | i16  | group                             |

## Output

| Name      | Туре | Description                           |
|-----------|------|---------------------------------------|
| remaining | *u32 | number of items yet to be transferred |

#### **Parameter Discussion**

**group** is the group involved in the asynchronous transfer.

Range: 1 or 2 for most devices.

1 through 8 for the DIO-96.

**remaining** is the number of items yet to be transferred. The actual number of bytes remaining to be transferred is equal to **remaining** multiplied by the value of **groupSize** specified in the call to DIG\_Grp\_Config or DIG\_SCAN\_Setup.



**Note** C Programmers—**remaining** is a pass-by-address parameter.

# **Using This Function**

DIG\_Block\_Check monitors an asynchronous transfer of data started via a DIG\_Block\_In or DIG\_Block\_Out call. If NI-DAQ has completed the transfer, DIG\_Block\_Check automatically calls DIG\_Block\_Clear, which permits NI-DAQ to make a new block transfer call immediately.

#### **Format**

status = DIG\_Block\_Clear (deviceNumber, group)

### **Purpose**

Halts any ongoing asynchronous transfer, allowing another transfer to be initiated.

### **Parameters**

### Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |
| group        | i16  | group                             |

Chapter 2

#### **Parameter Discussion**

**group** is the group involved in the asynchronous transfer.

Range: 1 or 2 for most devices.

1 through 8 for the DIO-96.

## **Using This Function**

(AT-DIO-32F only) If you aligned the buffer that you used in the previous call to DIG\_Block\_Out or DIG\_Block\_In by a call to Align\_DMA\_Buffer, DIG\_Block\_Clear unaligns that buffer before returning. Unaligning a buffer means that the data is shifted so that the first data point is located at **buffer**[0].

After NI-DAQ has started a block transfer, you must call <code>DIG\_Block\_Clear</code> before NI-DAQ can initiate another block transfer. Notice that <code>DIG\_Block\_Check</code> makes this call for you when it sees that NI-DAQ has completed a transfer. <code>DIG\_Block\_Clear</code> does not change any current group assignments, alter the current handshaking settings, or affect the state of the pattern generation mode.

# DIG Block In

#### **Format**

status = DIG\_Block\_In (deviceNumber, group, buffer, count)

## **Purpose**

Initiates an asynchronous transfer of data from the specified group to memory.

#### **Parameters**

### Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |
| group        | i16  | group                             |
| count        | u32  | number of items to be transferred |

## Input/Output

| Name   | Туре  | Description                 |
|--------|-------|-----------------------------|
| buffer | [i16] | conversion samples returned |

#### Parameter Discussion

**group** is the group to be read from.

Range: 1 or 2 for most devices.

1 through 8 for DIO-96.

**buffer** is an integer array that contains the data obtained by reading the group indicated by **group**. For the DIO-32F and DIO 6533 (DIO-32HS), NI-DAQ uses all 16 bits in each buffer element. Therefore, the size of the array, in bytes, must be at least **count** multiplied by the size of **group**. For all other devices, only the lower 8 bits of each buffer element are used. Therefore, the size of the array in bytes must be at least twice **count** multiplied by the size of **group**.

**count** is the number of items (for example, 8-bit items for a group of size 1, 16-bit items for a group of size 2, and 32-bit items for a group of size 4) to be transferred to the area of memory specified by **buffer** from the group indicated by **group**.

Range:  $2 \text{ through } 2^{32} - 1.$ 

## **Using This Function**

DIG\_Block\_In initiates an asynchronous transfer of data from a specified group to your buffer. The hardware is responsible for the handshaking details. Call DIG\_Grp\_Config for the DIO-32F and the DIO 6533 (DIO-32HS), or DIG\_SCAN\_Setup for all other devices at least once before calling DIG\_Block\_In. DIG\_Grp\_Config and DIG\_SCAN\_Setup select the group configuration for handshaking.

If you use a DIO-32F or DIO 6533 (DIO-32HS), <code>DIG\_Block\_In</code> writes data to all bytes of your buffer regardless of the group size. If the group size is 1 (which is supported only by the DIO 6533), <code>DIG\_Block\_In</code> writes to the lower 8 bits of **buffer**[0] on the first read from the group and the upper 8 bits of **buffer**[0] on the second read from the group. For example, if the first read acquired is 0xCD and the second data acquired is 0xAB, **buffer**[0] is 0xABCD. If group size is 2, <code>DIG\_Block\_In</code> writes data from the lower port (port 0 or port 2) to the lower 8 bits of **buffer** [0] and data from the higher port (port 1 or port 3) to the upper eight bits of **buffer** [0]. If group size is 4, <code>DIG\_Block\_In</code> writes the data from ports 0 and 1 to **buffer** [0] and the data from ports 2 and 3 to **buffer** [1].



**Note** On the DIO-32F, you cannot use DIG\_Block\_In with a group of **size** = 1. On the DIO 6533, you can use DIG\_Block\_In with a group of **size** = 1, but **count** must be even in this case.

If you use any device but a DIO-32F or DIO 6533, NI-DAQ writes to the lower byte of each buffer element with a value read from the group and sets the upper byte of each buffer element to zero. If the group size is 2, the lower byte of **buffer**[0] receives data from the first port in the group and the lower byte of **buffer**[1] receives data from the second port. NI-DAQ sets the upper bytes of **buffer**[0] and **buffer**[1] to 0.

If you have not configured the specified group as an input group, NI-DAQ does not perform the operation and returns an error. If you have assigned no ports to the specified group, NI-DAQ does not perform the operation and returns an error. You can call DIG\_Block\_Check to monitor the status of a transfer initiated by DIG\_Block\_In.

If previously enabled, pattern generation for the DIO-32F or the DIO 6533 begins when you execute DIG\_Block\_In. See *Pattern Generation I/O with the DIO-32F and DIO 6533* (*DIO-32HS*) *Devices* in Chapter 3, *Software Overview*, of the your *NI-DAQ User Manual for PC Compatibles* for important information about pattern generation.

To avoid delays that are caused by AT-bus DMA reprogramming on an AT-DIO-32F or AT-DIO-32HS, you can use dual DMA, or you can align your buffer. For more information about dual DMA, see the <code>Set\_DAQ\_Device\_Info</code> function. The second option, aligning your buffer, works only for the AT-DIO-32F with buffers up to 64K in size.

For the AT-DIO-32F, you can align your buffer by calling Align\_DMA\_Buffer. If you have aligned your buffer with a call to Align DMA Buffer and have not called DIG\_Block\_Clear (either directly or through DIG\_Block\_Check) to unalign the data, you must use the value of alignIndex return by Align DMA Buffer to access your data. In other words, data in an aligned buffer begins at buffer[alignIndex]. Data in an unaligned buffer begins at **buffer** [0].



**Note** DIG\_Block\_In will not work with groups of size = 1, because of a DMA limitation when using the AT-DIO-32F.



**Note** If you are using an SCXI-1200 with remote SCXI, count is limited by the amount of memory made available on the remote SCXI unit. For digital buffered input, you are limited to 5,000 bytes of data. The upper bound for **count** depends on the groupSize set in DIG\_SCAN\_Setup (for example, if groupSize = 2, count  $\leq$  2,500).

#### Format

status = DIG\_Block\_Out (deviceNumber, group, buffer, count)

### **Purpose**

Initiates an asynchronous transfer of data from memory to the specified group.

### **Parameters**

### Input

| Name         | Туре  | Description                       |
|--------------|-------|-----------------------------------|
| deviceNumber | i16   | assigned by configuration utility |
| group        | i16   | group                             |
| buffer       | [i16] | array containing the user's data  |
| count        | u32   | number of items to be transferred |

Chapter 2

#### **Parameter Discussion**

**group** is the group to be written to.

Range: 1 or 2 for most devices.

1 through 8 for DIO-96.

**buffer** is an integer array containing your data. NI-DAQ writes the data in this array to the group indicated by **group**. For the DIO-32F and DIO 6533 (DIO-32HS) devices, NI-DAQ uses all 16 bits in each buffer element. Therefore, the size of the array, in bytes, must be at least **count** multiplied by the size of **group**. For all other devices, NI-DAQ uses only the lower 8 bits of each buffer element. Therefore, the size of the array, in bytes, must be at least twice **count** multiplied by the size of **group**.

**count** is the number of items (for example, 8-bit items for a group of size 1, 16-bit items for a group of size 2, and 32-bit items for a group of size 4) to be transferred from the area of memory specified by **buffer** to the group indicated by **group**.

Range:  $2 \text{ through } 2^{32} - 1.$ 

# **Using This Function**

DIG\_Block\_Out initiates an asynchronous transfer of data from your buffer to a specified group. The hardware is responsible for the handshaking details. Call DIG\_Grp\_Config for the DIO-32F and the DIO 6533 devices, or DIG\_SCAN\_Setup for the other devices at least once before calling DIG\_Block\_Out to select the group configuration for handshaking.

If you use a DIO-32F or a DIO 6533 (DIO-32HS), NI-DAQ writes all bytes in your buffer to the group regardless of the group size. If the group size is one (which is supported only by the DIO 6533), DIG\_Block\_Out writes the lower 8 bits of **buffer**[0] to the group on the first write and the upper 8 bits of **buffer**[0] to the group on the second write. For example, if **buffer**[0] = 0xABCD, NI-DAQ writes 0xCD to the group on the first write, and writes 0xAB to the group on the second write. If group size is 2, DIG\_Block\_Out writes data from the lower 8 bits of **buffer** [0] to the lower port (port 0 or port 2) and data from the upper 8 bits of **buffer** [0] to the higher port (port 1 or port 3). If group size is 4, DIG\_Block\_Out writes data from **buffer**[0] to ports 0 and 1 and data from **buffer**[1] to ports 2 and 3.

If you use any device but a DIO-32F or a DIO 6533 (DIO-32HS), NI-DAQ writes the lower byte of each buffer element to the group in the order indicated in **portList** when you call DIG\_SCAN\_Setup. If the group size is 2, on the first write DIG\_Block\_Out writes the lower byte of **buffer**[0] to the first port on **portList** and the lower byte of **buffer**[1] to the last port on **portList**. For example, if **buffer**[0] = 0xABCD and **buffer**[1] is 0x1234, NI-DAQ writes 0xCD to the first port on **portList**, and writes 0x34 to the last port on **portList**.

If you have not configured the specified group as an output group, NI-DAQ does not perform the operation and returns an error. If you have assigned no ports to the specified group, NI-DAQ does not perform the operation and returns an error. You can call DIG\_Block\_Check to monitor the status of a transfer initiated by DIG\_Block\_Out.

If you have previously enabled pattern generation on a DIO-32F or DIO 6533 (DIO-32HS) device, the generation takes effect upon the execution of <code>DIG\_Block\_Out</code>. To avoid delays due to DMA reprogramming on the AT-DIO-32F or AT-DIO-32HS, you can use dual DMA (see the <code>Set\_DAQ\_Device\_Info</code> function), or you can align your data using the <code>Align\_DMA\_Buffer</code> function (AT-DIO-32F only). See the *Pattern Generation I/O with the DIO-32F and DIO 6533 (DIO-32HS)* section in Chapter 3, *Software Overview*, of the *NI-DAQ User Manual for PC Compatibles* for important information about pattern generation.



**Note**  $DIG_Block_Out$  will not work with groups of size = 1, because of a DMA limitation when using the AT-DIO-32F.



**Note** If you are using an SCXI-1200 with remote SCXI, **count** is limited by the amount of memory made available on the remote SCXI unit. For digital buffered output, you are limited to 5,000 bytes of data. The upper bound for **count** depends on the **groupSize** set in DIG\_SCAN\_Setup (for example, if **groupSize** = 2, count  $\leq$  2,500).

#### **Format**

status = DIG\_Block\_PG\_Config (deviceNumber, group, config, reqSource, timebase, reqInterval, externalGate)

# **Purpose**

Enables or disables the pattern generation mode of buffered digital I/O. When pattern generation is enabled, this function also determines the source of the request signals and, if the source is internal, the signal rate and gating mode.

Chapter 2

#### **Parameters**

### Input

| Name         | Type | Description                                             |
|--------------|------|---------------------------------------------------------|
| deviceNumber | i16  | assigned by configuration utility                       |
| group        | i16  | group                                                   |
| config       | i16  | enables or disables pattern generation                  |
| reqSource    | i16  | source of the request signals                           |
| timebase     | i16  | timebase value                                          |
| reqInterval  | u16  | number of <b>timebase</b> units between request signals |
| externalGate | i16  | enables or disables external gating                     |

#### **Parameter Discussion**

**group** is the group for which pattern generation is to be enabled or disabled.

Range: 1 or 2.

**config** is a flag that enables or disables pattern generation.

- 0: Disable pattern generation.
- 1: Enable pattern generation using request-edge latching output (input always uses request-edge latching).
- 2: Enable pattern generation without request-edge latching (input always uses request-edge latching).

#### reqSource

- 0: Internal. The board generates requests internally from onboard counters.
- 1: External. The board accepts requests from the REQ pin on the I/O connector.

2: Change detection (DIO 6533 [DIO-32HS] input groups only). The board generates an internal request whenever it detects a change on a significant input pin.

When using internally generated requests (reqSource 0 or 2), the REQ signal is an output; do not drive any external signal onto the REQ pin of the I/O connector.

NI-DAQ considers all of the group's lines significant for change detection by default. However, you can set a mask specifying that only certain lines should be compared. The same lines that are significant for pattern detection, if used, are also significant for change detection. If you are using pattern-detection messaging (DAQEvent 7 or 8), use the DAQTrigValO parameter of the Config\_DAQ\_Event\_Message function to set the pattern-and-change-detection mask. Otherwise, use the line-mask parameter of the DIG\_Trigger\_Config function. When using the DIG\_Trigger\_Config function to set a line mask, you do not need to select any particular start trigger, stop trigger, or search pattern.

**timebase** determines the amount of time that elapses during a single **reqInterval**. The following values are possible for **timebase**:

- -3: 50 ns (DIO 6533 [DIO-32HS] only).
  - 1: 1 µs.
- 2: 10 µs.
- 3: 100 µs.
- 4: 1 ms.
- 5: 10 ms.

**reqInterval** is a count of the number of **timebase** units of time that elapses between internally produced request signals.

Range: 2 through 65,535.

**externalGate** is an absolute parameter and should be set to 0. The AT-DIO-32F does support external gating but this simply requires making a connection at the I/O connector. If you use external gating for group 1, the signal connected to IN1 gates the pattern. If you use external gating for group 2, the signal connected to IN2 gates the pattern. For an AT-DIO-32F, the signal at INx must be high to enable the pattern. The DIO 6533 (DIO-32HS) devices use triggering instead of gating; for more information, refer to the DIG\_Trigger\_Config function.

# **Using This Function**

DIG\_Block\_PG\_Config enables or disables the pattern generation mode of digital I/O. If the **config** parameter equals 1 or 2, any subsequent DIG\_Block\_In or DIG\_Block\_Out call initiates a pattern generation operation. Pattern generation differs from handshaking I/O in that NI-DAQ produces the request signals at regularly clocked intervals. If **reqSource** equals 0, the **timebase** parameter equals 2, and the **reqInterval** parameter equals 10, NI-DAQ reads a new pattern from or writes a pattern to a group every 100 µs.

DIG\_Block\_PG\_Config enables or disables the pattern generation mode of digital I/O. If the **config** parameter equals 1 or 2, any subsequent DIG\_Block\_In or DIG\_Block\_Out call initiates a pattern generation operation. Pattern generation mode overrides any two-way handshaking mode set by the DIG\_Grp\_Mode function.

The primary difference between pattern generation and two-way handshaking is that in pattern generation timing information travels in only one direction, over the REQ line. The board can generate request signals at regularly clocked intervals (internal mode), you provide request signals to the board (external mode), or the board generates request signals whenever the input data changes (change detection). Either there is no return handshake on the ACK line (DIO 6533), or the return handshake can be ignored (DIO-32F).

On the DIO 6533 (DIO-32HS), pattern generation mode enables some additional features:

- You can enable start and stop triggers using DIG\_Trigger\_Config.
- NI-DAQ monitors the transfer speed, and the DIG\_Block\_Check function returns an
  error message if the system is unable to keep up with the programmed transfer rate
  (internal requests) or the rate of request pulses (external requests or change detection).

Only the DIO 6533 (DIO-32HS) boards support change detection. In this mode, the board generates an internal request any time it detects activity on the group's significant input lines. As long as the rate of change is within the board's change-detection limits, the board captures exactly one copy of each new input pattern.

If you set a pattern mask for change detection, you can select a subset of the group's input lines to be significant. However, when the board detects a change, it acquires data from all of the group's input lines, whether masked or not.

Using change detection mode in conjunction with the <code>Configure\_DAQ\_Event\_Message</code> function, you can also receive a message every time the input data changes. Use the <code>Configure\_DAQ\_Event\_Message</code> function to generate a message after each pattern is acquired. To ensure best precision in messaging, use the interrupt-driven data transfer method. Otherwise, messages might be delayed. You can use the <code>Set\_DAQ\_Device\_Info</code> function to select a transfer method.

On the DIO-32F, the advantage of using double-buffered output is that the variability in update intervals is reduced to an absolute minimum, producing the highest quality output at high update rates. The disadvantage is that the first ACK pulse produced by the device is not preceded by the first pattern. Instead, the second ACK pulse signals the generation of the first pattern. Also, the last pattern generated is not followed by an ACK pulse. The advantage of single-buffered output is the elimination of these ACK pulse irregularities. The first ACK pulse signals generation of the first pattern and the last pattern is followed by a final ACK pulse. The disadvantage of single-buffered output is that at high update rates, variations in DMA bus arbitration times can increase the variability in update intervals, reducing the overall quality of the digital patterns.

On the DIO 6533 (DIO-32HS), output is always double-buffered, thus minimizing the variability in update intervals. In addition, the ACK pulse irregularities are not present. Therefore, values 1 and 2 for the **config** parameter are equivalent for the DIO 6533.

#### **Format**

status = DIG\_Change\_Message\_Config (deviceNumber, operation, riseChanStr, fallChanStr, handle, message, callbackAddr)

Chapter 2

# **Purpose**

Configures rising-edge and falling-edge detection for the input lines on the 652X devices.

#### **Parameters**

### Input

| Name         | Туре | Description                        |
|--------------|------|------------------------------------|
| deviceNumber | i16  | assigned by configuration utility  |
| operation    | i16  | clear or configure message         |
| riseChanStr  | STR  | string of rising-edge input lines  |
| fallChanStr  | STR  | string of falling-edge input lines |
| handle       | i16  | handle                             |
| message      | i16  | user-defined message               |
| callbackAddr | u32  | user callback function address     |

### **Parameter Discussion**

**operation** indicates whether to clear or configure a new message.

0: Clear message.

1: Configure message.

**riseChanStr** is the string description of digital input ports or lines selected for rising-edge detection. This parameter is ignored when **operation** = 0.

**fallChanStr** is the string description of digital input ports or lines selected for falling-edge detection. This parameter is ignored when **operation** = 0.

The syntax for rise and fall channel string descriptions is as follows:  $p_1.l_1[:l_2 [p_1].l_2]]$ , where p is the port number, and 1 is the line number.



**Note** The **riseChanStr** and **fallChanStr** string syntax includes additional specific port and line parameters shown in brackets. Lists of channel strings may be separated by commas as shown in the example table.

The following table gives examples of the meanings of riseChanStr.

| Value of riseChanStr | Meaning                                                |
|----------------------|--------------------------------------------------------|
| 0.0                  | port 0, line 0                                         |
| 0.0:7                | port 0, line 0 through 7                               |
| 1. (0, 3, 5)         | port 1, lines 0, 3, and 5                              |
| 1.0:5,2.1:4          | port 1, lines 0 through 5<br>port 2, lines 1 through 4 |

**handle** is the handle to the window in which you want to receive a Windows message when an event happens. If **handle** is 0, no Windows messages are sent.

**message** is a message you define. When an event happens, NI-DAQ passes **message** back to you. **message** can be any value.

**callbackAddr** is the address of the user callback function. NI-DAQ calls this function when an event occurs. Set **callbackAddr** to 0 if you do not want to use a callback function.

See the Parameter Discussion section in Config\_DAQ\_Event\_Message for more details on the handle, message, and callbackAddr parameters.

## **Using This Function**

DIG\_Change\_Message\_Config configures and unconfigures messages that are sent upon a change in the digital state.

## **Enabling Change Detection**

Call DIG\_Change\_Message\_Config with **operation** = 1 to configure a message. Specify the ports or lines on which you want to detect rising edges in **riseChanStr**, and falling edges in **fallEdgeStr**. Event notification is done through the windows API function PostMessage, or callback function that you define. For more details about event notification, refer to the *Using This Function* section in Config\_DAQ\_Event\_Message. You can call DIG\_Filter\_Config to enable debouncing (filtering). Then, call DIG\_Change\_Message\_Control with **controlCode** = 0 to start change detection operation.

Upon the receipt of a message or callback, you can then read a digital port using DIG\_In\_Prt or a digital line using DIG\_In\_Line to determine the state of the digital port or line.

# **Disabling Change Detection**

Call  $\texttt{DIG\_Change\_Message\_Control}$  with controlCode = 1 to stop the change detection operation. Then, call  $\texttt{DIG\_Change\_Message\_Config}$  with operation = 0 (clear).

# DIG\_Change\_Message\_Control

#### **Format**

status = DIG\_Change\_Message\_Control (deviceNumber, controlCode)

## **Purpose**

Starts or stops the change detection operation of the digital input lines on the 652X devices.

## **Parameters**

### Input

| Name         | Type | Description                             |
|--------------|------|-----------------------------------------|
| deviceNumber | i16  | assigned by configuration utility       |
| controlCode  | i16  | specifies the operation to be performed |

#### **Parameter Discussion**

controlCode determines the operation to perform.

0: Start change detection.

1: Stop change detection.

## **Using This Function**

Use this function in conjunction with <code>DIG\_Change\_Message\_Config</code>. Refer to the *Using This Function* section of <code>DIG\_Change\_Message\_Config</code> for additional information on this function.

# DIG DB Config

#### **Format**

status = DIG\_DB\_Config (deviceNumber, group, dbMode, oldDataStop, partialTransfer)

## **Purpose**

Enables or disables double-buffered digital transfer operations and sets the double-buffered options.

#### **Parameters**

### Input

| Name            | Type | Description                                                |
|-----------------|------|------------------------------------------------------------|
| deviceNumber    | i16  | assigned by configuration utility                          |
| group           | i16  | group                                                      |
| dbMode          | i16  | enable or disable double-buffered mode                     |
| oldDataStop     | i16  | enable or disable regeneration of old data                 |
| partialTransfer | i16  | enable or disable partial transfer of final half<br>buffer |

### **Parameter Discussion**

**group** is the group to be configured.

Range: 1 or 2.

**dbMode** indicates whether to enable or disable the double-buffered mode of digital transfer.

- 0: Disable double buffering (default).
- 1: Enable double buffering.

**oldDataStop** is a flag whose value enables or disables the mechanism whereby the function stops the digital block output when NI-DAQ is about to output old data a second time. For digital block input, **oldDataStop** enables or disables the mechanism whereby the function stops the input operation before NI-DAQ overwrites unretrieved data.

- 0: Allow regeneration of data.
- 1: Disallow regeneration of data.

**partialTransfer** is a flag whose value enables or disables the mechanism whereby NI-DAQ can partial transfer a final half buffer to the digital output block through a DIG\_DB\_Transfer call. The function stops digital block output when NI-DAQ has output the partial half. This field is ignored for input groups.

- 0: Disallow partial transfers.
- 1: Allow partial transfers.

## **Using This Function**

Double-buffered digital block functions cyclically input or output digital data to or from a buffer. The buffer is divided into two equal halves so that NI-DAQ can save or write data from one half while block operations use the other half. For input, this mechanism makes it necessary to alternately save both halves of the buffer so that NI-DAQ does not overwrite data in the buffer before saving the data. For output, the mechanism makes it necessary to alternately write to both halves of the buffer so that NI-DAQ does not output old data. Use DIG\_DB\_Transfer to save or write the data as NI-DAQ is inputting or outputting the data. You should call DIG\_Block\_Clear to stop the continuous cyclical double-buffered digital operation started by DIG\_Block\_Out or DIG\_Block\_In.

Refer to Chapter 5, *NI-DAQ Double Buffering*, of the *NI-DAQ User Manual for PC Compatibles* for an explanation of double buffering.

For the AT-DIO-32F and AT-DIO-32HS, enabling either **oldDataStop** or **partialTransfer** causes an artificial split in the digital block buffer, which requires DMA reprogramming at the end of each half buffer. For a group that is configured for handshaking, this means that a pause in data transfer can occur while NI-DAQ reprograms the DMA. For a group configured for pattern generation, this can cause glitches in the digital input or output pattern (time lapses greater than the programmed period) during DMA reprogramming. Therefore, you should enable these options only if necessary.

#### **Format**

status = DIG\_DB\_HalfReady (deviceNumber, group, halfReady)

### **Purpose**

Checks whether the next half buffer of data is available during a double-buffered digital block operation. You can use DIG\_DB\_HalfReady to avoid the waiting period that can occur because DIG\_DB\_Transfer waits until NI-DAQ can transfer the data before returning.

Chapter 2

#### **Parameters**

### Input

| Name         | Type | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |
| group        | i16  | group                             |

## **Output**

| Name      | Туре | Description                                       |
|-----------|------|---------------------------------------------------|
| halfReady | *i16 | whether the next half buffer of data is available |

### **Parameter Discussion**

**group** is the group to be configured.

Range: 1 or 2.

halfReady indicates whether the next half buffer of data is available. When halfReady equals one, you can use DIG\_DB\_Transfer to read or write the data immediately. When halfReady equals 0, the data is not yet available.



**Note** C Programmers—**halfReady** is a pass-by-address parameter.

# **Using This Function**

Double-buffered digital block functions cyclically input or output digital data to or from a buffer. The buffer is divided into two equal halves so that NI-DAQ can save or write data from one half while block operations use the other half. For input, this mechanism makes it necessary to alternately save both halves of the buffer so that NI-DAQ does not overwrite data in the buffer before saving the data. For output, the mechanism makes it necessary to alternately write to both halves of the buffer so that NI-DAQ does not output old data. Use

DIG\_DB\_Transfer to save or write the data NI-DAQ is inputting or outputting the data. This function, when called, waits until NI-DAQ can complete the data transfer before returning. During slower paced digital block operations this waiting period can be significant. You can use DIG\_DB\_HalfReady so that the transfer functions are called only when NI-DAQ can make the transfer immediately.

Refer to Chapter 5, *NI-DAQ Double Buffering*, of the *NI-DAQ User Manual for PC Compatibles* for an explanation of double buffering.

## **DIG DB Transfer**

#### **Format**

status = DIG\_DB\_Transfer (deviceNumber, group, halfBuffer, ptsTfr)

## **Purpose**

For an input operation, <code>DIG\_DB\_Transfer</code> waits until NI-DAQ can transfer half the data from the buffer being used for double-buffered digital block input to another buffer, which NI-DAQ passes to the function. For an output operation, <code>DIG\_DB\_Transfer</code> waits until NI-DAQ can transfer the data from the buffer passed to the function to the buffer being used for double-buffered digital block output. You can execute <code>DIG\_DB\_Transfer</code> repeatedly to read or write sequential half buffers of data.

#### **Parameters**

### Input

| Name         | Type | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |
| group        | i16  | group                             |
| ptsTfr       | u32  | points to transfer                |

## Input/Output

| Name       | Туре  | Description                                                |
|------------|-------|------------------------------------------------------------|
| halfBuffer | [i16] | array to which or from which the data is to be transferred |

### **Parameter Discussion**

**group** is the group to be configured.

Range: 1 or 2.

**halfBuffer** is the integer array to which or from which NI-DAQ transfers the data. The size of the array must be at least half the size of the circular buffer being used for the double-buffered digital block operation.

**ptsTfr** is used only for output groups with partial transfers of half buffers enabled. If you have set **partialTransfer** with DIG\_DB\_Config, NI-DAQ can make a transfer to the digital output buffer of less than or equal to half the buffer size, as specified by this field. However, the function will halt the double-buffered digital operation when NI-DAQ makes a transfer of less

than half the buffer size. NI-DAQ ignores this field for all other cases (input or output without partial transfers of half buffers enabled) and the transfer count is equal to half the buffer size. Range: 0 to half the size of the digital block buffer.

## **Using This Function**

If you have set **partialTransfer** for an output group, the **ptsTfr** field allows NI-DAQ to make transfers of less than half the buffer size to an output buffer. This is useful when NI-DAQ must output a long stream of data but the amount of data is not evenly divisible by half the buffer size. If **ptsTfr** is equal to half the buffer size, the transfer is identical to a transfer without **partialTransfer** set. If **ptsTfr** is less than half the buffer size, however, NI-DAQ makes the transfer to the circular output buffer and alters the DMA reprogramming information so that the digital output operation will halt after the new data is output.

Refer to Chapter 5, *NI-DAQ Double Buffering*, of the *NI-DAQ User Manual for PC Compatibles* for an explanation of double buffering and possible error and warning conditions.

#### **Format**

status = DIG\_Filter\_Config (deviceNumber, mode, chanStr, interval)

## **Purpose**

Configures filtering for the input lines on the 652X devices.

#### **Parameters**

#### Input

| Name         | Type | Description                            |
|--------------|------|----------------------------------------|
| deviceNumber | i16  | assigned by configuration utility      |
| mode         | i16  | on, off, or on with specified interval |
| chanStr      | STR  | string of filtered input lines         |
| interval     | f64  | filter interval                        |

Chapter 2

### **Parameter Discussion**

mode indicates filtering operation for lines specified in chanStr.

- 0: Filter on with default interval.
- 1: Filter off.
- 2: Filter on with specified interval.

**chanStr** is the string description of digital input ports or lines selected for filtering.

The syntax for the **chanStr** string description is as follows:  $p_1 \cdot l_1[:[l_2 \mid p_1 \cdot l_2]]$ , where p is the port number, and l is the line number.



**Note** The **chanStr** string syntax includes additional specific port and line parameters shown in brackets. Lists of channel strings may be separated by commas as shown in the example table.

Value of chanStr Meaning

0.0 port 0, line 0

0.0:7 port 0, line 0 through 7

1. (0, 3, 5) port 1, lines 0, 3, and 5

1.0:5,2.1:4 port 1, lines 0 through 5

The following table gives examples of the meanings of chanStr.

**interval** specifies the time base for the digital filter in seconds. The range is 0.001 s (1 ms) to 0.1 s (100 ms) for 652X devices. Any shorter noise will be filtered out.

port 2, lines 1 through 4

## **Using This Function**

You can use DIG\_Filter\_Config with Dig\_Change\_Message\_Config and DIG\_Change\_Message\_Control to debounce the input signals on 652X devices and to avoid unnecessary change notifications. In addition, DIG\_Filter\_Config can provide signal conditioning to the input signals during reads and writes when calling DIG\_In\_Line or DIG\_In\_Prt.

The first configuration call of the filter function enables the specified lines in **chanstr** for filtering. Subsequent calls to DIG\_Filter\_Config can either enable or disable filtering on the lines specified in **chanstr**. For 652X devices, **interval** is a parameter that pertains to the device and cannot be further specified by **chanstr**.

To enable filtering on a particular digital input port or line, call DIG\_Filter\_Config with **mode** = 0 or 2. If you specify **mode** = 0, set **interval** to 0.0. If you specify **mode** = 2, set **interval** to a value in the range as described in the Parameter Discussion section for **interval**.

#### **Format**

status = DIG\_Grp\_Config (deviceNumber, group, groupSize, port, dir)

### **Purpose**

Configures the specified group for port assignment, direction (input or output), and size.

Chapter 2

#### **Parameters**

### Input

| Name         | Туре | Description                             |
|--------------|------|-----------------------------------------|
| deviceNumber | i16  | assigned by configuration utility       |
| group        | i16  | group                                   |
| groupSize    | i16  | size of the group                       |
| port         | i16  | digital I/O ports assigned to the group |
| dir          | i16  | input or output                         |

#### **Parameter Discussion**

**group** is the group to be configured.

Range: 1 or 2 for the DIO 6533 devices and the AT-DIO-32F.

groupSize indicates the size of the group. The following values are permitted for groupSize:

- 0: Unassign any ports previously assigned to **group**.
- 1: One port assigned (8-bit group) to **group**.
- 2: Two ports assigned (16-bit group) to **group**.
- 4: Four ports assigned (32-bit group) to **group**.



**Note** For the DIO-32F, you must use **port** = 0 or 1 if **group** = 1, and **port** = 2 or 3 if **group** = 2.



**Note** For the DIO-32F, block operations are not allowed for groups of size = 1. For the DIO 6533 (DIO-32HS), you can use block operations for groups of size = 1 if you set group = 1 and port = 0, or group = 2 and port = 2.

**port** indicates the digital I/O port or ports assigned to the group. The assignments made depend on the values of **port** and of **groupSize**:

```
        groupSize = 1
        port = 0 assigns port 0 (A).

        port = 1 assigns port 1 (B).
        port = 2 assigns port 2 (C).

        port = 3 assigns port 3 (D).
        port = 0 assigns ports 0 and 1 (A and B).

        groupSize = 2
        port = 2 assigns ports 2 and 3 (C and D).

        groupSize = 4
        port = 0 assigns ports 0, 1, 2, and 3 (A, B, C, and D).
```

dir indicates the direction, input, or output for which the group is to be configured.

- 0: **port** is configured as an input port (default).
- 1: **port** is configured as an output port.
- 3: **port** is configured as an input port with request-edge latching disabled.
- 4: **port** is configured as an output port with request-edge latching enabled.

## **Using This Function**

DIG\_Grp\_Config configures the specified group according to the port assignment and direction. If **groupSize** = 0, NI-DAQ releases any ports assigned to the group specified by **group** and clears the group handshake circuitry. If **groupSize** = 1, 2, or 4, NI-DAQ assigns the specified ports to the group and configures the ports for the specified direction. NI-DAQ subsequently writes to or reads from ports assigned to a group using the DIG\_In\_Grp and DIG\_Out\_Grp or the DIG\_Block\_In and DIG\_Block\_Out functions. NI-DAQ can no longer access any ports assigned to a group through any of the nongroup calls listed previously. Only the DIG\_Block calls can use a group of size 4.

If you are using an AT-DIO-32F and intend to perform block I/O, you are limited to group sizes of 2 and 4. If you are using a DIO 6533 (DIO-32HS) and intend to perform block I/O, you also can use a group size of 1. After system startup, no ports are assigned to groups. See your hardware user manual for information about group handshake timing.

# DIG\_Grp\_Mode

#### **Format**

status = DIG\_Grp\_Mode (deviceNumber, group, protocol, edge, reqPol, ackPol, ackDelayTime)

## **Purpose**

Configures the specified group for handshake signal modes.

#### **Parameters**

### Input

| Name         | Type | Description                                                     |
|--------------|------|-----------------------------------------------------------------|
| deviceNumber | i16  | assigned by configuration utility                               |
| group        | i16  | group                                                           |
| protocol     | i16  | basic handshaking system                                        |
| edge         | i16  | rising-edge or falling-edge pulsed signals                      |
| reqPol       | i16  | request signal is to be active high or active low               |
| ackPol       | i16  | acknowledge handshake signal is to be active high or active low |
| ackDelayTime | i16  | data settling time allowed                                      |

#### **Parameter Discussion**

**group** is the group to be configured.

Range: 1 or 2.

**protocol** indicates the basic handshaking mode. Refer to your device user manual for details on using the **protocol** parameter.

Range is 0 through 2 for the DIO-32F, or 0 through 4 for the DIO 6533 (DIO-32HS).

- 0: Group is configured for held-ACK (level-ACK) handshake protocol.
- 1: Group is configured for pulsed-ACK handshake protocol.
- 2: Group is configured for pulsed-ACK handshake protocol with variable ACK pulse width.
- Group is configured for synchronous burst handshaking, using the REQ, ACK, and PCLK signals.
- 4: Group is configured to emulate 8255 handshake timing—DIO-24(6503).



**Note** This function does not support variable-length ACK pulse width (**signal** = 2) on AT-DIO-32F Revision B and earlier.

**edge** indicates whether the group is to be configured for leading-edge or trailing-edge pulsed signals. **edge** is valid only if **protocol** = 1 or 2.

- 0: Group is configured for leading-edge pulsed handshake signals.
- 1: Group is configured for trailing-edge pulsed handshake signals. This setting does not support variable ACK pulse width (**protocol** = 2).

**reqPol** indicates whether the group request signal is to be active high or active low. **reqPol** is ignored if **protocol** = 4. **protocol** 4 always uses an active low request signal.

- 0: Group is configured for active high (non-inverted) request handshake signal polarity.
- 1: Group is configured for active low (inverted) request handshake signal polarity.

**ackPol** indicates whether the group acknowledge handshake signal is to be active high or active low. **ackPol** is ignored if **protocol** = 4. **protocol** 4 always uses an active low acknowledge signal.

- 0: Group is configured for active high (non-inverted) acknowledge handshake signal polarity.
- 1: Group is configured for active low (inverted) acknowledge handshake signal polarity.

ackDelayTime indicates a data-settling period, in multiples of 100 ns, inserted into the handshaking protocol. The delay slows down the data transfer, increasing setup and hold times. The effect of the delay varies by handshaking protocol. If **protocol** = 0, or **protocol** = 1 and **edge** = 0, the **ackDelayTime** delays the generation of the ACK signal. If **protocol** = 2, or **protocol** = 1 and **edge** = 1, the **ackDelayTime** increases the duration of the ACK pulse. If **protocol** = 3, the **ackDelayTime** specifies the PCLK period (minimum of 50 ns for a **delayTime** of zero), and applies only when the PCLK is internally generated. On a DIO 6533 (DIO-32HS), which can perform rapid back-to-back transfer cycles, the delay time also increases the minimum delay between cycles for protocols 0, 1, 2, and 4. This is the only effect of **ackDelayTime** on **protocol** 4. For more information on programmable delays, see your device's user manual.

Range: 0 through 7.

- 0: No settling time, or a PCLK period of 50 ns.
- 1: 100 ns settling time or PCLK period.
- 7: 700 ns settling time or PCLK period.

## **Using This Function**

On a DIO 6533 (DIO-32HS), the CPULL line controls the default, undriven line polarities that apply before handshaking begins. The **ackPol** and **reqPol** parameters control the active polarities that cause data transfer. In most applications, you should set the active polarity and the default polarity to opposite values so that the default polarity is inactive. Depending on

your application, setting the polarities incorrectly can lead to a missed data point at the beginning of the transfer, or, when **protocol** equals 3 (burst mode), to large numbers of missed data. See your device's user manual for more information.

DIG\_Grp\_Mode configures the group handshake signals according to the specified parameters, after you use DIG\_Grp\_Config to select a port assignment and direction.

After initialization, the default handshake mode for each group is as follows:

 $\label{eq:protocol} \textbf{protocol} = 0 : \quad \text{held-ACK (level-ACK)} \quad \text{handshake protocol}.$ 

edge = 0: edge parameter not valid because protocol = 0.

**reqPol** = 0: Request handshake signal is not inverted (active high).

**ackPol** = 0: Acknowledge handshake signal is not inverted (active high).

**ackDelayTime** = 0: Settling time is 0 ns.

You need to call DIG\_Grp\_Mode only if you need a different handshake mode. Refer to your board's user manual for information about handshake timing and mode information.



**Note** (AT-DIO-32F Revision B boards only) Do not use a leading-edge, pulsed handshaking signal for an input group. NI-DAQ cannot latch the data into the port in this mode and, if new data is presented to the port before NI-DAQ reads and saves the old data, the old data is lost.

# DIG\_Grp\_Status

#### Format

status = DIG\_Grp\_Status (deviceNumber, group, handshakeStatus)

## **Purpose**

Returns a handshake status word indicating whether the specified group is ready to be read (input group) or written (output group). For the DIO 6533 (DIO-32HS), this function also initiates the handshaking process if not previously initiated.

#### **Parameters**

### Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |
| group        | i16  | group                             |

## Output

| Name            | Туре | Description      |
|-----------------|------|------------------|
| handshakeStatus | *i16 | handshake status |

#### **Parameter Discussion**

**group** is the group whose handshake status is to be obtained.

Range: 1 or 2.

handshakeStatus returns the handshake status of the group. handshakeStatus can be either 0 or 1. The significance of handshakeStatus depends on the configuration of the group. If the group is configured as an input group, handshakeStatus = 1 indicates that the group has acquired data and that NI-DAQ can read data from the group. If the group is configured as an output group, handshakeStatus = 1 indicates that the group is ready to accept output data and that NI-DAQ can write new data to the group.



**Note** C Programmers—handshakeStatus is a pass-by-address parameter.

# **Using This Function**

DIG\_Grp\_Status reads the handshake status of the specified group and returns an indication of the group status in **handshakeStatus**. DIG\_Grp\_Status, along with DIG\_Out\_Grp and DIG\_In\_Grp, facilitates handshaking of digital data between systems. If the specified group

is configured as an input group and DIG\_Grp\_Status returns **handshakeStatus** = 1, DIG\_In\_Grp can fetch the data an external device has latched in. If the specified group is configured as an output group and DIG\_Grp\_Status returns **handshakeStatus** = 1, DIG\_Out\_Grp can write the next piece of data to the external device. If the specified group is not assigned any ports, NI-DAQ returns an error code and **handshakeStatus** = 0.

You must call DIG\_Grp\_Config to assign ports to a group and to configure a group for data direction. Group configuration is discussed under the DIG\_Grp\_Config description.

For the DIO-32F, the state of **handshakeStatus** corresponds to the state of the DRDY bit. Refer to your device user manual for handshake timing details.

# DIG\_In\_Grp

#### **Format**

status = DIG\_In\_Grp (deviceNumber, group, groupPattern)

## **Purpose**

Reads digital input data from the specified digital group.

#### **Parameters**

### Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |
| group        | i16  | group                             |

### Output

| Name         | Туре | Description                      |
|--------------|------|----------------------------------|
| groupPattern | *i16 | digital data read from the ports |

#### Parameter Discussion

**group** is the group to be read from.

Range: 1 or 2.

**groupPattern** returns the digital data read from the ports in the specified group. **groupPattern** is mapped to the digital input ports making up the group in the following way:

- If the group contains one port, NI-DAQ returns the 8 bits read from that port in the low-order 8 bits of **groupPattern**.
- If the group contains two ports, NI-DAQ returns the 16 bits read from those ports in the following way: if the group contains ports 0 and 1, NI-DAQ returns the value read from port 0 in the low-order 8 bits, and NI-DAQ returns the value read from port 1 in the high-order 8 bits. If the group contains ports 2 and 3, NI-DAQ returns the value read from port 2 in the low-order 8 bits, and NI-DAQ returns the value read from port 3 in the high-order 8 bits. NI-DAQ reads from the two ports simultaneously.
- If the group contains four ports, NI-DAQ returns a **deviceSupportError**. Use DIG\_Block\_In to read a group containing four ports.



**Note** C Programmers—**groupPattern** is a pass-by-address parameter.

## **Using This Function**

DIG\_In\_Grp returns digital data from the group on the specified device. If the group is configured as an input group, reading that group returns the digital logic state of the lines of the ports in the group as some external device is driving them. If the group is configured as an output group and has read-back capability, reading the group returns the output state of that group. If no ports have been assigned to the group, NI-DAQ does not perform the operation and returns an error code. You must call DIG\_Grp\_Config to assign ports to a group and to configure the group as an input or output group.

# DIG In Line

#### **Format**

status = DIG\_In\_Line (deviceNumber, port, line, state)

## **Purpose**

Returns the digital logic state of the specified digital line in the specified port.

#### **Parameters**

### Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |
| port         | i16  | digital I/O port number           |
| line         | i16  | digital line to be read           |

## Output

| Name  | Туре | Description                     |
|-------|------|---------------------------------|
| state | *i16 | returns the digital logic state |

#### Parameter Discussion

**port** is the digital I/O port number.

Range: 0 or 1 for the AT-AO-6/10, DAQCard-500/700, PC-TIO-10, PC-OPDIO-16,

AO-2DC, 516 and LPM devices.

0 for the E Series devices, except the AT-MIO-16DE-10 and 6025E devices.

0 through 2 for the DIO-24 (6503) and Lab and 1200 Series devices.

0 and 2 through 4 for the AT-MIO-16DE-10 and 6025E devices.

0 through 3 for the VXI-AO-48XDC.

0 through 4 for the DIO-32F and DIO 6533 (DIO-32HS).

0 through 11 for the DIO-96.

0 through 15 for the VXI-DIO-128.

0 for the PCI-4451 and PCI-4452.

0 through 3 for the 455*X* devices.

0 for the 671*X* and 6704 devices.

0 through 5 for the 652X devices.



**Note** Refer to Chapter 10, *DIO-32F and DAQDIO 6533 (DIO 32HS) Digital I/O Devices*, in the *DAQ Hardware Overview Guide* for a bitmap of port 4.

**line** is the digital line to be read.

Range: 0 through k-1, where k is the number of digital I/O lines making up the port.

state returns the digital logic state of the specified line.

- 0: The specified digital line is at a digital logic low.
- 1: The specified digital line is at a digital logic high.



**Note** C Programmers—**state** is a pass-by-address parameter.

## **Using This Function**

DIG\_In\_Line returns the digital logic state of the specified digital line in the specified port. If the specified port is configured as an input port, NI-DAQ determines the state of the specified line by the way in which some external device is driving it. If the port or line is configured as an output port and the port has read-back capability, NI-DAQ determines the state of the line by the way in which that port itself is driving it. Reading a line configured for output on the PC-TIO-10 or an E Series device returns a warning stating that NI-DAQ has read an output line.

# DIG In Prt

### Format

status = DIG\_In\_Prt (deviceNumber, port, pattern)

## Purpose

Returns digital input data from the specified digital I/O port.

#### **Parameters**

### Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |
| port         | i16  | digital I/O port number           |

## Output

| Name    | Туре | Description                               |
|---------|------|-------------------------------------------|
| pattern | *i32 | digital data read from the specified port |

#### Parameter Discussion

**port** is the digital I/O port number.

0 or 1 for the AT-AO-6/10, DAQCard-500/700, PC-TIO-10, PC-OPDIO-16, Range:

516 devices, AO-2DC, and LPM devices.

0 for the E Series devices, except the AT-MIO-16DE-10 and 6025E devices.

0 through 2 for the DIO-24 (6503) and Lab and 1200 Series devices.

0 and 2 through 4 for the AT-MIO-16DE-10 and 6025E devices.

0 through 3 for the VXI-AO-48XDC.

0 through 4 for the DIO-32F and DIO 6533 (DIO-32HS).

0 through 11 for the DIO-96.

0 through 15 for the VXI-DIO-128.

0 for the PCI-4451 and PCI-4452.

0 through 3 for 455X devices.

0 for the 671*X* and 6704 devices

0 through 5 for the 652X devices.



Note Refer to Chapter 10, DIO-32F and DAQDIO 6533 (DIO 32HS) Digital I/O Devices, in the DAQ Hardware Overview Guide, for a bitmap of port 4.

**pattern** returns the digital data read from the specified port. NI-DAQ maps **pattern** to the digital input lines making up the port such that bit 0, the least significant bit, corresponds to digital input line 0. If the port is less than 32 bits wide, NI-DAQ also sets the bits of **pattern** that do not correspond to lines in the port to 0. For example, because port 0 on the E Series boards is 8 bits wide, only bits 0 through 7 of **pattern** reflect the digital state of these ports, while NI-DAQ sets all other bits of **pattern** to 0.



**Note** C Programmers—pattern is a pass-by-address parameter.

# **Using This Function**

DIG\_In\_Prt reads digital data from the port on the specified device. If the port is configured as an input port, reading that port returns the digital logic state of the lines as some external device is driving them. If the port is configured as an output port and has read-back capability, reading the port returns the output state of that port, along with a warning that NI-DAQ has read an output port.

## DIG\_Line\_Config

#### **Format**

status = DIG\_Line\_Config (deviceNumber, port, line, dir)

## **Purpose**

Configures a specific line on a port for direction (input or output).

#### **Parameters**

## Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |
| port         | i16  | digital I/O port number           |
| line         | i16  | digital line                      |
| dir          | i16  | direction, input, or output       |

## **Parameter Discussion**

**port** is the digital I/O port number.

Range: 0 for the E Series devices.

0 through 1 for the PC-TIO-10.

0 through 3 for the DIO 6533 (DIO-32HS) and the VXI-AO-48XDC.

0 through 15 for the VXI-DIO-128. 0 for the PCI-4451 and PCI-4452.

0 through 3 for 455X devices.

0 for the 671X and 6704 devices.

0 through 5 for the 652X devices.

**line** is the digital line for which to configure.

Range: 0 through up to 31, depending on the port size of your device.

**dir** indicates the direction, input or output, to which the line is to be configured.

- 0: Line is configured as an input line (default).
- 1: Line is configured as an output line.
- 3: Line is configured as an output line with a wired-OR (open collector) driver (DIO 6533 [DIO-32HS] only).

## **Using This Function**

With this function, a PC-TIO-10, DIO 6533 (DIO-32HS), VXI-AO-48XDC, E Series, or DSA port can have any combination of input and output lines. Use DIG\_Prt\_Config to set all lines on the port to be either all input or all output lines.

This function is optional for the 652X devices because the ports are pre-configured to be either input or output. Refer to DIG\_Port\_Config for the port configuration.

# DIG\_Out\_Grp

#### **Format**

status = DIG\_Out\_Grp (deviceNumber, group, groupPattern)

## **Purpose**

Writes digital output data to the specified digital group.

#### **Parameters**

### Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |
| group        | i16  | group                             |
| groupPattern | i16  | digital data to be written        |

#### Parameter Discussion

**group** is the group to be written to.

Range: 1 or 2.

**groupPattern** is the digital data to be written to the specified port. NI-DAQ maps **groupPattern** to the digital output ports making up the group in the following way:

- If the group contains one port, NI-DAQ writes the low-order 8 bits of **groupPattern** to that port.
- If the group contains two ports, NI-DAQ writes all 16 bits of **groupPattern** to those ports. If the group contains ports 0 and 1, NI-DAQ writes the low-order eight bits to port 0 and the high-order 8 bits to port 1. If the group contains ports 2 and 3, NI-DAQ writes the low-order 8 bits to port 2 and the high-order 8 bits to port 3. NI-DAQ writes to the two ports simultaneously.
- If the group contains four ports, NI-DAQ returns a **deviceSupportError**. Use DIG\_Block\_Out to write to a group containing four ports.

## **Using This Function**

DIG\_Out\_Grp writes the specified digital data to the group on the specified device. If you have not configured the specified group as an output group, NI-DAQ does not perform the operation and returns an error. If you have assigned no ports to the specified group, NI-DAQ does not perform the operation and returns an error. You must call DIG\_Grp\_Config to configure a group.

## **DIG Out Line**

#### **Format**

status = DIG\_Out\_Line (deviceNumber, port, line, state)

## **Purpose**

Sets or clears the specified digital output line in the specified digital port.

#### **Parameters**

### Input

| Name         | Type | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |
| port         | i16  | digital I/O port number           |
| line         | i16  | digital output line               |
| state        | i16  | new digital logic state           |

#### **Parameter Discussion**

port is the digital I/O port number.

Range:

0 or 1 for the AT-AO-6/10, DAQCard-500/700, PC-TIO-10, PC-OPDIO-16,

516 devices, AO-2DC, and LPM devices.

0 for the E Series devices, except the AT-MIO-16DE-10 and 6025E devices.

0 through 2 for the DIO-24 (6503) and Lab and 1200 Series devices.

0 and 2 through 4 for the AT-MIO-16DE-10 and 6025E devices.

0 through 3 for the VXI-AO-48XDC.

0 through 4 for the DIO-32F and DIO 6533 (DIO-32HS).

0 through 11 for the DIO-96.

8 through 15 for the VXI-DIO-128.

0 for the PCI-4451 and PCI-4452.

0 through 3 for 455X devices.

0 for the 671X and 6704 devices.

0 through 5 for the 652X devices.



**Note** Refer to the *DAQ Hardware Overview Guide*, Chapter 10, for a bitmap of port 4.

**line** is the digital output line to be written to.

Range: 0 through k-1, where k is the number of digital I/O lines making up the port.

state contains the new digital logic state of the specified line.

- 0: The specified digital line is set to digital logic low.
- 1: The specified digital line is set to digital logic high.

## **Using This Function**

DIG\_Out\_Line sets the digital line in the specified port to the specified state. The remaining digital output lines making up the port are not affected by this call. If the port is configurable and you have not configured the port as an output port, NI-DAQ does not perform the operation and returns an error. Except for the PC-TIO-10, the DIO 6533 (DIO-32HS), the VXI-AO-48XDC, 652X, 671X, 6704, E Series, or DSA device, you must call DIG\_Prt\_Config to configure a digital I/O port as an output port. On the PC-TIO-10, DIO 6533, VXI-AO-48XDC, 652X, 671X, 6704, E Series, or DSA device, you need only configure the specified line for output using DIG\_Prt\_Config or DIG\_Line\_Config.



**Note** Connecting one or more AMUX-64T boards or an SCXI chassis to an MIO or AI device causes DIG\_Out\_Line to return a badInputValError when called with port equal to 0 and line equal to one of the following values:

One AMUX-64T device—line equal to 0 or 1. Two AMUX-64T devices—line equal to 0, 1, or 2. Four AMUX-64T devices—line equal to 0, 1, 2, or 3. An SCXI chassis—line equal to 0, 1, 2, or 4.

#### **Format**

status = DIG\_Out\_Prt (deviceNumber, port, pattern)

## **Purpose**

Writes digital output data to the specified digital port.

#### **Parameters**

### Input

| Name         | Туре | Description                          |
|--------------|------|--------------------------------------|
| deviceNumber | i16  | assigned by configuration utility    |
| port         | i16  | digital I/O port number              |
| pattern      | i32  | digital pattern for the data written |

Chapter 2

#### **Parameter Discussion**

**port** is the digital I/O port number.

Range:

0 or 1 for the AT-AO-6/10, DAQCard-500/700, PC-TIO-10, PC-OPDIO-16,

516 devices, AO-2DC, and LPM devices.

0 for the E Series devices, except the AT-MIO-16DE-10 and 6025E devices.

0 through 2 for the DIO-24 (6503) and Lab and 1200 Series devices.

0 and 2 through 4 for the AT-MIO-16DE-10 and 6025E devices.

0 through 3 for the VXI-AO-48XDC.

0 through 4 for the DIO-32F and DIO 6533 (DIO-32HS).

0 through 11 for the DIO-96.

8 through 15 for the VXI-DIO-128.

0 for the PCI-4451 and PCI-4452.

0 through 3 for 455X devices.

0 for the 671X and 6704 devices.

0 through 5 for the 652X devices.



**Note** Refer to the *DAQ Hardware Overview Guide*, Chapter 10, for a bitmap of port 4.

**pattern** is the digital pattern for the data written to the specified port. If **port** is less than 32 bits wide, NI-DAQ maps the low bits of **pattern** to the digital output lines making up the port so that bit 0, the least significant bit, corresponds to digital output line 0, and only the low order bits in **pattern** affect the port. For example, because port 0 on the E Series devices is eight bits wide, only bits 0 through 7 of **pattern** affect the digital output state of these ports.

## **Using This Function**

DIG\_Out\_Prt writes the specified digital data to the port on the specified device. If the specified port is configurable and you have not configured that port as an output port, NI-DAQ does not perform the operation and returns an error. You must call DIG\_Prt\_Config to make a configurable digital I/O port as an output port. Using DIG\_Out\_Prt on a port with a combination of input and output lines returns a warning that some lines are configured for input.

Port 4 of the DIO-32F or DIO 6533 (DIO-32HS) is not a configurable port and does not require a DIG\_Prt\_Config call. On a DIO 6533, however, bits 0 and 2 of port 4 are unavailable when group 1 is configured for handshaking; bits 1 and 3 are unavailable when group 2 is configured for handshaking.

## **DIG Prt Config**

#### **Format**

status = DIG\_Prt\_Config (deviceNumber, port, mode, dir)

## **Purpose**

Configures the specified port for direction (input or output). DIG\_Prt\_Config also sets the handshake mode for the DIO-24 (6503), 6025E devices, AT-MIO-16DE-10, DIO-96, and Lab and 1200 Series devices.

#### **Parameters**

## Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |
| port         | i16  | digital I/O port number           |
| mode         | i16  | handshake mode                    |
| dir          | i16  | direction, input, or output       |

### **Parameter Discussion**

port is the digital I/O port number.

Range:

0 or 1 for the AT-AO-6/10, DAQCard-500/700, PC-TIO-10, PC-OPDIO-16,

516 devices, AO-2DC, and LPM devices.

0 for the E Series devices, except the AT-MIO-16DE-10 and 6025E devices.

0 through 2 for the DIO-24 (6503) and Lab and 1200 Series devices.

0 through 3 for the DIO-32F and DIO 6533 (DIO-32HS).

0 and 2 through 4 for the AT-MIO-16DE-10 and 6025E devices.

0 through 3 for the VXI-AO-48XDC.

0 through 11 for the DIO-96.

0 through 15 for the VXI-DIO-128.

0 for the PCI-4451 and PCI-4452.

0 through 3 for 455*X* devices.

0 for the 671*X* and 6704 devices.

0 through 5 for the 652X devices.

**mode** indicates the handshake mode that the port uses.

- 0: Port is configured for no-handshaking (nonlatched) mode. You must use **mode** = 0 for all other ports and boards. You can use the DIO-32F and DIO 6533 (DIO-32HS) for handshaking, but only through the group calls (see DIG\_Grp\_Config).
- 1: Port is configured for handshaking (latched) mode. **mode** = 1 is valid only for ports 0 and 1 of the DIO-24 (6503) and Lab and 1200 Series devices; for ports 2 and 3 of the 6025E devices and AT-MIO-16DE-10; and for ports 0, 1, 3, 4, 6, 7, 9, and 10 of the DIO-96.

dir indicates the direction, input or output, to which the port is to be configured.

Range: 0 through 3.

- 0: Port is configured as an input port (default).
- 1: Port is configured as a standard output port.
- 2: Port is configured as a bidirectional port.
- 3: Port is configured as an output port, with wired-OR (open collector) output drivers.



**Note** mode must be set to handshaking in order to use bidirectional.

The following ports can be configured as bidirectional:

| Device                           | Ports          |
|----------------------------------|----------------|
| AT-MIO-16DE-10 and 6025E devices | 2              |
| Lab and 1200 Series devices      | 0              |
| DIO-24 (6503)                    | 0              |
| DIO-96                           | 0, 3, 6, and 9 |



**Note** The only ports that can be configured as wired-OR output ports are DIO 6533 (DIO 32HS)ports 0 through 3.

For the VXI-DIO-128, PC-OPDIO-16, and 652*X* devices, the port direction is preconfigured as follows:

| Device      | Input Port | Output Port |
|-------------|------------|-------------|
| 6527        | 0–2        | 35          |
| VXI-DIO-128 | 0–7        | 8–15        |
| PC-OPDIO-16 | 1          | 0           |

## **Using This Function**

DIG\_Prt\_Config configures the specified port according to the specified direction and handshake mode. Any configurations not supported by or invalid for the specified port return an error, and NI-DAQ does not change the port configuration. Information about the valid configuration of any digital I/O port is in the DAQ Hardware Overview Guide, and Chapter 3, Software Overview, of the NI-DAQ User Manual for PC Compatibles.

For the DIO-24 (6503), DIO-32F, DIO 6533 (DIO-32HS), DIO-96, and Lab and 1200 Series devices, DIG\_Prt\_Config returns an error if the specified port has been assigned to a group by a previous call to DIG\_Grp\_Config or DIG\_SCAN\_Setup. DIG\_Prt\_Config also returns an error for the DIO-32F and DIO 6533 if the specified port is port 4.

After system startup, the digital I/O ports on all the boards supported by this function are configured as follows:

dir = 0:Input port.

mode = 0: No-handshaking mode.

Also, ports on the DIO-24 (6503), DIO-32F, DIO 6533 (DIO-32HS), DIO-96, and Lab and 1200 Series devices are not assigned to any group. If this is not the digital I/O configuration you want, you must call DIG\_Prt\_Config to change the port configuration. You must call DIG\_Grp\_Config instead to use handshaking modes on the DIO-32F and DIO 6533.

This function is optional for the 652X devices because the ports are pre-configured to be either input or output.



**Note** 6025E devices, AT-MIO-16DE-10, Lab and 1200 Series, PC-AO-2DC, PC-DIO-24/PnP, and DIO-96 users—Because of the design of the Intel 8255 chip, calling this function on one port will reset the output states of lines on other ports on the same 8255 chip. The other ports will remain in the same configuration; input ports are not affected. Therefore, you should configure all ports before outputting data.



**Note** If you have connected one or more AMUX-64T boards or an SCXI chassis module to your MIO or AI device, DIG\_Prt\_Config returns a **badPortError** if called with port equal to 0.

## **DIG Prt Status**

#### **Format**

status = DIG\_Prt\_Status (deviceNumber, port, handshakeStatus)

## **Purpose**

Returns a status word indicating the handshake status of the specified port.

#### **Parameters**

## Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |
| port         | i16  | digital I/O port number           |

## **Output**

| Name            | Туре | Description      |
|-----------------|------|------------------|
| handshakeStatus | *i16 | handshake status |

## **Parameter Discussion**

**port** is the digital I/O port number.

Range: 0 or 1 for the DIO-2

 $0\ \text{or}\ 1$  for the DIO-24 (6503) and Lab and 1200 Series devices.

2 or 3 for the AT-MIO-16DE-10 and 6025E devices.

0, 1, 3, 4, 6, 7, 9, and 10 for the DIO-96.

handshakeStatus returns the handshake status of the port.

- 0: A port is not available for reading from an input port or writing to an output port.
- 1: A unidirectional port is available for reading from an input port or writing to an output port.
- 2: A bidirectional port is ready for reading.
- 3: A bidirectional port is ready for writing.
- 4: A bidirectional port is ready for reading and writing.



**Note** C Programmers—**handshakeStatus** is a pass-by-address parameter.

DIG\_Prt\_Status reads the handshake status of the specified port and returns the port status in handshakeStatus. DIG\_Prt\_Status, along with DIG\_Out\_Prt and DIG\_In\_Prt, facilitates handshaking of digital data between systems. If the specified port is configured as an input port, DIG\_Prt\_Status indicates when to call DIG\_In\_Prt to fetch the data that an external device has latched in. If the specified port is configured as an output port, DIG\_Prt\_Status indicates when to call DIG\_Out\_Prt to write the next piece of data to the external device. If the specified port is not configured for handshaking, NI-DAQ returns an error code and handshakeStatus = 0.

Chapter 2

Refer to your device user manual for handshake timing information. If the port is configured for input handshaking, **handshakeStatus** corresponds to the state of the IBF bit. If the port is configured for output handshaking, **handshakeStatus** corresponds to the state of the OBF\* bit.



**Note** You must call DIG\_Prt\_Config to configure a port for data direction and handshaking operation.

## DIG SCAN Setup

#### **Format**

status = DIG\_SCAN\_Setup (deviceNumber, group, groupSize, portList, dir)

## **Purpose**

Configures the specified group for port assignment, direction (input or output), and size.

#### **Parameters**

### Input

| Name         | Type  | Description                       |
|--------------|-------|-----------------------------------|
| deviceNumber | i16   | assigned by configuration utility |
| group        | i16   | group to be configured            |
| groupSize    | i16   | number of 8-bit ports             |
| portList     | [i16] | list of ports                     |
| dir          | i16   | direction, input, or output       |

## **Parameter Discussion**

**group** is the group to be configured.

Range: 1 or 2 for most devices.

1 through 8 for the DIO-96.

**groupSize** selects the number of 8-bit ports in the group.

Range: 0 through 2 for most devices.

0 through 8 for the DIO-96.



**Note** Zero is to unassign any ports previously assigned to group.

**portList** is the list of ports in **group**. The order of the ports in the list determines how NI-DAQ interleaves data in your buffer when you call <code>DIG\_Block\_In</code> or <code>DIG\_Block\_Out</code>. The last port in the list determines the port whose handshaking signal lines NI-DAQ uses to communicate with the external device and to generate hardware interrupt.

Range: 0 or 1 for most devices.

2 or 3 for the AT-MIO-16DE-10 and 6025E devices.

0, 1, 3, 4, 6, 7, 9, or 10 for the DIO-96.

dir selects the direction, input or output, to which the group is to be configured.

- 0: Port is configured as an input port (default).
- 1: Port is configured as an output port.
- 2: Port is configured as a bidirectional port.

The following ports can be configured as bidirectional:

| Device                           | Ports          |
|----------------------------------|----------------|
| AT-MIO-16DE-10 and 6025E devices | 2              |
| Lab and 1200 Series devices      | 0              |
| DIO-24 (6503)                    | 0              |
| DIO-96                           | 0, 3, 6, and 9 |

## **Using This Function**

DIG\_SCAN\_Setup configures the specified group according to the specified port assignment and direction. If **groupSize** is 0, NI-DAQ releases any ports previously assigned to **group**. Any configurations not supported by or invalid for the specified group return an error, and NI-DAQ does not change the group configuration. NI-DAQ subsequently writes to or reads from ports assigned to a group as a group using DIG\_Block\_In and DIG\_Block\_Out. NI-DAQ can no longer access any ports assigned to a group through any of the non-group calls listed previously.

Because each port on the DIO-24 (6503), 6025E, AT-MIO-16DE-10, and Lab and 1200 Series devices has its own handshaking circuitry, extra wiring might be necessary to make data transfer of a group with more than one port reliable. If the group has only one port, no extra wiring is needed.

Each input port has a different Strobe Input (STB\*) control signal.

- PC4 on the I/O connector is for port 0.
- PC2 on the I/O connector is for port 1.

Each input port also has a different Input Buffer Full (IBF) control signal.

- PC5 on the I/O connector is for port 0.
- PC1 on the I/O connector is for port 1.

Each output port has a different Output Buffer Full (OBF\*) control signal.

- PC7 on the I/O connector is for port 0.
- PC1 on the I/O connector is for port 1.

Each output port also has a different Acknowledge Input (ACK\*) control signal.

- PC6 on the I/O connector is for port 0.
- PC2 on the I/O connector is for port 1.

On the DIO-96 I/O connector, you can find four different sets of PC pins. They are APC, BPC, CPC, and DPC. APC pins correspond to port 0 and port 1, BPC pins correspond to port 3 and port 4, CPC pins correspond to port 6 and port 7, and DPC pins correspond to port 9 and port 10. For example, CPC7 is the OBF control signal for port 6 and CPC1 is the OBF for port 7 if both ports are configured as handshaking output ports.

If a group of ports is configured as input, you need to tie all the corresponding STB\* together and connect them to the appropriate handshaking signal of the external device. You should connect only the IBF of the last port on **portList** to the external device. No connection is needed for the IBF of the other port on **portList**.

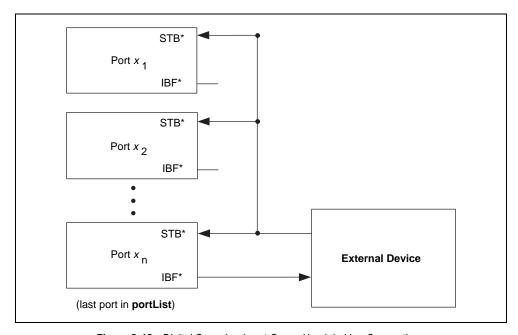



Figure 2-12. Digital Scanning Input Group Handshaking Connections

If a group of ports is configured as output, you should not make any connection on the control signals except those for the last port on **portList**. You should make the connection with the external device as if only the last port on **portList** is in the group. No connection is needed for any other port on the list.

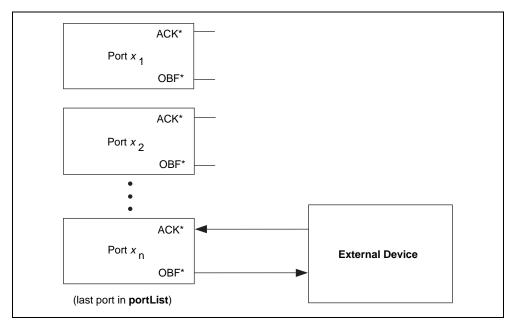



Figure 2-13. Digital Scanning Output Group Handshaking Connections

For DIO-24 (6503) users, the correct W1 jumper setting is required to allow DIG\_Block\_In and DIG\_Block\_Out to function properly. If port 0 is configured as a handshaking output port, set jumper W1 to PC4; otherwise, set the jumper to PC6. However, if port 0 is configured as bidirectional, set the jumper to PC2.

Also, if port 0 is configured as bidirectional on a PC-DIO-24 (6503), port 1 will not be available.

# DIG\_Trigger\_Config

#### **Format**

## **Purpose**

Sets up trigger configuration for subsequent buffered digital operations with pattern generation mode only (either internal or external requests).

## **Parameters**

## Input

| Name             | Туре | Description                                                        |
|------------------|------|--------------------------------------------------------------------|
| deviceNumber     | i16  | assigned by configuration utility                                  |
| group            | i16  | group                                                              |
| startTrig        | i16  | source of start trigger                                            |
| startPol         | i16  | polarity of start trigger                                          |
| stopTrig         | i16  | source of stop trigger                                             |
| stopPol          | i16  | polarity of stop trigger                                           |
| ptsAfterStopTrig | u32  | number of points to acquire after the trigger                      |
| pattern          | u32  | data pattern on which to trigger                                   |
| lineMask         | u32  | mask selecting bits to be compared for pattern or change detection |

#### **Parameter Discussion**

startTrig specifies the source of the start trigger.

- 0: Software start trigger.
- 1: Hardware trigger.
- 2: Digital pattern trigger (input group only).

startPol specifies the polarity of the start trigger.

- 0: Active high.
- 1: Active low.
- 2: Pattern matched.
- Pattern not matched.

**stopTrig** specifies the source of the stop trigger.

- 0: None.
- 1: Hardware trigger.
- 2: Digital pattern trigger (input group only).

stopPol specifies the polarity of the stop trigger.

- 0: Active high.
- 1: Active low.
- 2: Pattern matched.
- 3: Pattern not matched.

**ptsAfterStopTrig** is the number of data points to acquire following the trigger. This parameter is valid only if **stopTrig** is not 0. If **stopTrig** is 2, this number will include the matching pattern.

Range: 2 through **count**, where **count** is the value of the **count** parameter in the DIG\_Block\_\* functions.

**pattern** is the digital pattern to be used as a trigger point. This parameter is used only when either **startTrig** or **stopTrig** is 2.

**lineMask** selects the individual data lines to be compared when **startTrig** or **stopTrig** is 2 or 3 or when you enable change detection, using <code>DIG\_Block\_PG\_Config</code>. This parameter allows you to set all the <code>DONT\_CARE</code> bits in the pattern. A 0 means <code>DONT\_CARE</code>, but a 1 is significant.

## **Using This Function**

If **startTrig** is 0, a digital block operation begins as soon as you call a DIG\_Block\_\* function. If **startTrig** is 1, a digital block operation does not begin until NI-DAQ receives an external trigger pulse on the group's ACK (STARTTRIG) pin.

If **stopTrig** is 0, a digital block operation ends as soon as the operation reaches the end of the buffer (unless you enable double buffering with the <code>DIG\_DB\_Config</code> function). If **stopTrig** is 1, a digital block operation continues in a cyclical mode until NI-DAQ receives an external trigger pulse on the group's STOPTRIG pin, at which time NI-DAQ acquires an additional number of data points specified by **ptsAfterStopTrig** before terminating the operation. The <code>DIG\_Block\_Check</code> function rearranges the data into chronological order (from oldest to newest).

If **startTrig** or **stopTrig** is 2 or 3, the board compares incoming data to the specified pattern. The DIO 6533 contains a single pattern-detection circuit per group. Therefore, you cannot set both **startTrig** and **stopTrig** to 2 or 3. You also cannot set **startTrig** or **stopTrig** to 2 or 3 and also configure a pattern-detection message (**DAQEvent** = 7 or 8) using Config\_DAQ\_Event\_Message.

If **startTrig** or **stopTrig** is 2, the operation starts or stops when the incoming data matches the pattern on all bits declared significant by **lineMask**. If **startTrig** or **stopTrig** is 3, the operation starts or stops when the incoming data ceases to match the pattern on all bits declared significant by **lineMask**. The **lineMask** also controls which bits are significant for change detection, if used. See <code>DIG\_Block\_PG\_Config</code> for information about change detection.

Bits that are significant for one purpose are significant for all purposes. If you configure both change detection and a start or stop trigger, the same <code>lineMask</code> applies to both. If you configure both change detection and a pattern-detection message using <code>Config\_DAQ\_Event\_Message</code>, use <code>DAQTrigValO</code> instead of <code>lineMask</code> to control which bits are significant.

## Get DAQ Device Info

### **Format**

status = Get\_DAQ\_Device\_Info (deviceNumber, infoType, infoValue)

## **Purpose**

Allows you to retrieve parameters pertaining to the device operation.

#### **Parameters**

## Input

| Name         | Type | Description                       |  |
|--------------|------|-----------------------------------|--|
| deviceNumber | i16  | assigned by configuration utility |  |
| infoType     | u32  | type of information to retrieve   |  |

Chapter 2

## Output

| Name      | Туре | Description           |
|-----------|------|-----------------------|
| infoValue | *u32 | retrieved information |

## **Parameter Discussion**

The legal range for the **infoType** is given in terms of constants that are defined in the header file. The header file you should use depends on the language you are using:

- C programmers—NIDAQCNS.H (DATAACQ.H for LabWindows/CVI)
- BASIC programmers—NIDAQCNS.INC
- Pascal programmers—NIDAQCNS.PAS

**infoType** indicates which parameter to retrieve. **infoValue** reflects the value of the parameter. **infoValue** is given either in terms of constants from the header file or as numbers, as appropriate.

**infoType** can be one of the following.

| infoType                                               | Description                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND_ACK_REQ_EXCHANGE_GR1<br>ND_ACK_REQ_EXCHANGE_GR2     | See the Set_DAQ_Device_Info function for details.  ND_NOT_APPLICABLE if not relevant to the device.                                                                                                                                                                                                                                               |
| ND_AI_FIFO_INTERRUPTS                                  | Interrupt generation mode is a selection of how the interrupts are generated in relation to the filling of the FIFO. If you select ND_INTERRUPT_EVERY_SAMPLE, there is an interrupt generated at every sample entered into the AI FIFO. If you select ND_INTERRUPT_HALF_FIFO, there is an interrupt generated when the AI FIFO becomes half full. |
| ND_BASE_ADDRESS                                        | Base address, in hexadecimal, of the device specified by deviceNumber.                                                                                                                                                                                                                                                                            |
| ND_CALIBRATION_ENABLE                                  | Status of Calibration channel: ND_YES if enabled, ND_NO if disabled, ND_NOT_APPLICABLE if not relevant to device.                                                                                                                                                                                                                                 |
| ND_CLOCK_REVERSE_MODE_GR1<br>ND_CLOCK_REVERSE-MODE_GR2 | See the Set_DAQ_Device_Info function for details.  ND_NOT_APPLICABLE if not relevant to the device.                                                                                                                                                                                                                                               |
| ND_COUNTER_1_SOURCE                                    | See the Set_DAQ_Device_Info function for details.  ND_NOT_APPLICABLE if not relevant to the device.                                                                                                                                                                                                                                               |
| ND_COUNTER_TYPE                                        | Type of counter present on board. Example counters are: ND_NI_TIO, ND_STC, ND_AM9513, or ND_8253. If no counter is present, ND_NONE is returned.                                                                                                                                                                                                  |

| infoType                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Description                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND_DATA_XFER_MODE_AI ND_DATA_XFER_MODE_AO_GR1 ND_DATA_XFER_MODE_AO_GR2 ND_DATA_XFER_MODE_GPCTR0 ND_DATA_XFER_MODE_GPCTR1 ND_DATA_XFER_MODE_GPCTR2 ND_DATA_XFER_MODE_GPCTR3 ND_DATA_XFER_MODE_GPCTR4 ND_DATA_XFER_MODE_GPCTR5 ND_DATA_XFER_MODE_GPCTR6 ND_DATA_XFER_MODE_GPCTR7 ND_DATA_XFER_MODE_GPCTR7 ND_DATA_XFER_MODE_DIO_GR1 ND_DATA_XFER_MODE_DIO_GR2 ND_DATA_XFER_MODE_DIO_GR3 ND_DATA_XFER_MODE_DIO_GR4 ND_DATA_XFER_MODE_DIO_GR5 ND_DATA_XFER_MODE_DIO_GR5 ND_DATA_XFER_MODE_DIO_GR6 ND_DATA_XFER_MODE_DIO_GR6 ND_DATA_XFER_MODE_DIO_GR7 ND_DATA_XFER_MODE_DIO_GR7 ND_DATA_XFER_MODE_DIO_GR7 ND_DATA_XFER_MODE_DIO_GR7 | See the Set_DAQ_Device_Info function for details.  ND_NOT_APPLICABLE if not relevant to the device.                                                             |
| ND_DEVICE_TYPE_CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Type of the device specified by <b>deviceNumber</b> .  See Init_DA_Brds for a list of device type codes.                                                        |
| ND_DMA_A_LEVEL ND_DMA_B_LEVEL ND_DMA_C_LEVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Level of the DMA channel assigned to the device as channel A, B, and C. ND_NOT_APPLICABLE if not relevant or disabled.                                          |
| ND_INTERRUPT_A_LEVEL ND_INTERRUPT_B_LEVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Level of the interrupt assigned to the device as interrupt A and B. ND_NOT_APPLICABLE if not relevant or disabled.                                              |
| ND_SUSPEND_POWER_STATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | State of the USB device power when operating system enters power saving/suspend mode. Keep in mind that this applies only to USB devices run by external power. |



**Note** C Programmers—**infoValue** is a pass-by-address parameter.

## Get NI DAQ Version

#### **Format**

status = Get\_NI\_DAQ\_Version (version)

## **Purpose**

Returns the version number of the NI-DAQ library.

#### **Parameter**

## Output

| Name    | Type | Description             |
|---------|------|-------------------------|
| version | *u32 | version number assigned |

## **Using This Function**

Get\_NI\_DAQ\_Version returns a 4-byte value in the **version** parameter. The upper two bytes are reserved and the lower two bytes contain the version number. Always use bitwise *and* the 4-byte value with the hexadecimal value FFFF before using the version number. For version 6.6, the lower 2-byte value is the hexadecimal value 660.



**Note** C Programmers—**version** is a pass-by-address parameter.

## **GPCTR\_Change\_Parameter**

#### **Format**

status = GPCTR\_Change\_Parameter (deviceNumber, gpctrNum, paramID, paramValue)

## **Purpose**

Selects a specific parameter setting for the general-purpose counter.

#### **Parameters**

### Input

| Name         | Type | Description                                             |  |
|--------------|------|---------------------------------------------------------|--|
| deviceNumber | i16  | assigned by configuration utility                       |  |
| gpctrNum     | u32  | number of the counter to use                            |  |
| paramID      | u32  | identification of the parameter to change.              |  |
| paramValue   | u32  | new value for the parameter specified by <b>paramID</b> |  |

#### **Parameter Discussion**

Legal ranges for **gpctrNum**, **paramID**, and **paramValue** are given in terms of constants defined in a header file. The header file you should use depends on the language you are using:

- C programmers—NIDAQCNS.H (DATAACQ.H for LabWindows/CVI)
- BASIC programmers—NIDAQCNS.INC (Visual Basic for Windows programmers should refer to the *Programming Language Considerations* section in Chapter 1, *Using the NI-DAQ Functions*, for more information.)
- Pascal programmers—NIDAQCNS.PAS

**gpctrNum** indicates which counter to program. Legal values for this parameter are shown in Table 2-13.

Table 2-13. Legal Values for gpctrNum Parameter

| 445X*, 671X, and<br>E Series Devices | 455 <i>X</i> and 6601 Devices | 6602 and 6608 Devices |
|--------------------------------------|-------------------------------|-----------------------|
| ND_COUNTER_0                         | ND_COUNTER_0                  | ND_COUNTER_0          |
| ND_COUNTER_1                         | ND_COUNTER_1                  | ND_COUNTER_1          |
|                                      | ND_COUNTER_2                  | ND_COUNTER_2          |
|                                      | ND_COUNTER_3                  | ND_COUNTER_3          |
|                                      |                               | ND_COUNTER_4          |
|                                      |                               | ND_COUNTER_5          |
|                                      |                               | ND_COUNTER_6          |
|                                      |                               | ND_COUNTER_7          |

<sup>\*</sup> If you configure the 445X to receive its master clock signal from another 445X over RTSI, ND\_COUNTER\_0 is not legal.

Legal values for **paramValue** depend on **paramID**. The following paragraphs list legal values for **paramID** with explanations and corresponding legal values for **paramValue**:

 $paramID = ND\_SOURCE$ 

The general-purpose counter counts transitions of this signal. Corresponding legal values for **paramValue** are as follows:

Table 2-14. Legal Values for paramValue when paramID = ND\_SOURCE and gpctrNum = ND\_Counter\_X.

| 671X, 445X, and E Series Devices                                                                                                                                                                                                              | NI-TIO Based Devices                                                                                                                                                                                                                                                         |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ND_PFI_0 through ND_PFI_9—the 10 I/O connector pins*.  ND_RTSI_0 through ND_RTSI_6—the seven RTSI lines.  ND_INTERAL_20_MHZ and ND_INTERNAL_100_KHZ—the internal timebases  ND_OTHER_GPCTR_TC—the terminal count of the other general-purpose | I/O connector pins ND_PFI_39*, ND_PFI_35*, ND_PFI_31, ND_PFI_27, ND_PFI_23, ND_PFI_19, ND_PFI_15, and ND_PFI_11.  ND_RTSI_0 through ND_RTSI_6—the seven RTSI lines.  ND_INTERNAL_20_MHZ and ND_INTERNAL_100_HZ—the internal timebases.  ND_INTERNAL_MAX_TIMEBASE—the maximum |  |
| counter (See Table 2-15 for definition of other counter).                                                                                                                                                                                     | timebase. The value of this timebase can be determined by a GPCTR_Watch call.                                                                                                                                                                                                |  |
| ND_DEFAULT_PFI_LINE—selects the default PFI line associated with the                                                                                                                                                                          | ND_OTHER_GPCTR_GATE (See Table 2-15 for definition of other counter).                                                                                                                                                                                                        |  |
| particular counter source (see Table 2-23 for default PFI lines).  ND_LOW—sets the source to ground or                                                                                                                                        | ND_OTHER_GPCTR_TC—the terminal count of the other general-purpose counter (See Table 2-15 for definition of other counter).                                                                                                                                                  |  |
| low                                                                                                                                                                                                                                           | ND_DEFAULT_PFI_LINE—selects the default PFI line associated with the particular counter source (see Table 2-23 for default PFI lines)                                                                                                                                        |  |
|                                                                                                                                                                                                                                               | ND_LOW—sets the source to ground or low                                                                                                                                                                                                                                      |  |
| *ND_PFI_39, ND_PFI_35, and ND_COUNTER_4 through ND_COUNTER_7 are not available on 455 <i>X</i> devices. PCI-4453 and PCI-4454 devices do not have I/O connections for PFI pins.                                                               |                                                                                                                                                                                                                                                                              |  |

The legal values for NI-TIO based devices for **paramValue** when **paramID** =ND\_SOURCE and **gpctrNum** =ND\_RTC\_X:

- ND\_INTERNAL\_20\_MHZ (default) and ND\_INTERNAL\_MAX\_TIMEBASE—the internal timebases. ND\_INTERNAL\_MAX\_TIMEBASE can only be used if it is less than 50 MHz.
- ND\_PXI\_BACKPLANE\_CLOCK-10 MHz back planes signal.
   ND\_PXI\_BACKPLANE\_CLOCK is only available on PXI devices.
- ND\_RTSI\_CLOCK-RTSI synchronization clock.

**Other Counter: Other Counter:** E Series, 671X, and 6602 and 455*X* and 445X Devices 6608 Devices 6601 Devices **gpctrNum** ND COUNTER 0 ND COUNTER 1 ND COUNTER 1 ND COUNTER 1 ND\_COUNTER\_1 ND\_COUNTER\_0 ND\_COUNTER\_0 ND\_COUNTER\_0 ND\_COUNTER\_2 ND\_COUNTER\_3 ND\_COUNTER\_3 ND\_COUNTER\_3 ND\_COUNTER\_2 ND\_COUNTER\_2 ND\_COUNTER\_4 ND\_COUNTER\_5 ND\_COUNTER\_5 ND\_COUNTER\_4 ND\_COUNTER\_6 ND\_COUNTER\_7

**Table 2-15.** Definition of Other Counter for paramValue Set to ND\_OTHER\_GPCTR\_TC.

Table 2-16. Default Source Selection for ND\_SIMPLE\_EVENT\_CNT or ND\_BUFFERED\_EVENT\_CNT.

ND\_COUNTER\_6

| gpctrNum     | E Series, 671X and<br>445X Devices | 660X Devices <sup>1</sup> | 455X Devices             |
|--------------|------------------------------------|---------------------------|--------------------------|
| ND_COUNTER_0 | ND_PFI_8                           | ND_PFI_39                 | not exposed2             |
| ND_COUNTER_1 | ND_PFI_3                           | ND_PFI_35                 | not exposed <sup>2</sup> |
| ND_COUNTER_2 | _                                  | ND_PFI_31                 | ND_PFI_31                |
| ND_COUNTER_3 | _                                  | ND_PFI_27                 | ND_PFI_27                |
| ND_COUNTER_4 | _                                  | ND_PFI_23                 | _                        |
| ND_COUNTER_5 | _                                  | ND_PFI_19                 | _                        |
| ND_COUNTER_6 | _                                  | ND_PFI_15                 | _                        |
| ND_COUNTER_7 | _                                  | ND_PFI_11                 | _                        |

<sup>&</sup>lt;sup>1</sup> For 6601 devices, only counters 0 through 3 apply.

<sup>&</sup>lt;sup>2</sup> You must explicitly set the source of these counters with **paramID**= ND\_Source.



**Note** The default source selection for all other applications is ND\_INTERNAL\_20\_MHZ.

Use this function with **paramID** = ND\_SOURCE\_POLARITY to select polarity of transitions to use for counting.

ND\_COUNTER\_7

#### paramID = ND\_START\_TRIGGER (NI-TIO based)

This **paramID** allows you to change how a counter arms itself. If **paramValue** is set to ND\_ENABLED, the counter will be armed using a hardware trigger. If **paramValue** is set to ND\_AUTOMATIC, the counter will be armed by a software command. ND\_AUTOMATIC is the default value.

You can synchronize the arming of multiple counters by using a hardware trigger. Software must arm the counters before the hardware trigger takes place. The hardware arming circuitry looks for a rising edge on the hardware arming pin.

#### paramID = ND\_SOURCE\_POLARITY

The general-purpose counter counts the transitions of the signal selected by **paramID** = ND\_SOURCE. Corresponding legal values for **paramValue** are as follows:

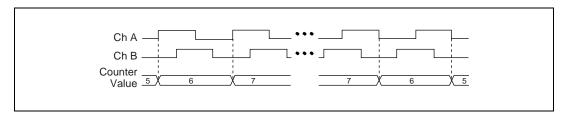
- ND\_LOW\_TO\_HIGH or ND\_POSITIVE—counter counts the low-to-high transitions of the source signal.
- ND\_HIGH\_TO\_LOW OR ND\_NEGATIVE—counter counts the high-to-low transitions of the source signal.

#### paramID = ND\_PRESCALE\_VALUE (NI-TIO based devices only)

This **paramID** specifies a prescaler to the counter source selection. A prescaler allows you to divide the frequency of the counter source. Prescaling can allow you to measure frequencies of signals faster than ND\_MAX\_TIMEBASE. Corresponding legal values for **paramValue** are as follows:

- 1—prescaling is not enabled.
- 2—divides the frequency of the source by 2.
- The value of ND\_MAX\_PRESCALE—divides the frequency of the source by ND\_MAX\_PRESCALE. The value of ND\_MAX\_PRESCALE can be queried using the GPCTR\_Watch function call.

#### **paramID** = ND\_ENCODER\_TYPE (NI-TIO based devices only)


When you are using position measurement applications, this **paramID** allows you to set which type of motion encoder you are using.

Encoders generally have three channels: channels A, B, and Z. This **paramID** does not deal with the Z channel. The A channel is connected to the default counter source pin. The B channel is connected to the aux line pin.

When channel A leads channel B in a quadrature cycle, the counter increments. When channel B leads channel A in a quadrature cycle, the counter decrements. The amount of increments and decrements per cycle depends on the type of encoding: X1, X2, or X4.

ND\_QUADRATURE\_ENCODER\_X1—Figure 2-14 shows a quadrature cycle and the
resulting increments and decrements for X1 encoding. When channel A leads channel B,
the increment occurs on the rising edge of channel A. When channel B leads channel A,
the decrement occurs on the falling edge of channel A. To use this encoder mode, use

 $\label{eq:coder_type} \begin{subarrate}{ll} \tt GPCTR\_Change\_Parameter & with \begin{subarrate}{ll} \tt gramID = ND\_ENCODER\_TYPE \ and \ paramValue = ND\_QUADRATURE\_ENCODER\_X1. \end{subarrate}$ 



**Figure 2-14.** Position Measurement for X1 Encoders

• ND\_QUADRATURE\_ENCODER\_X2—As shown in Figure 2-15, the same behavior holds for X2 encoding except the counter increments or decrements on each edge of channel A, depending on which channel leads the other. Each cycle results in two increments or decrements. To use this encoder mode, use GPCTR\_Change\_Parameter with paramID = ND\_ENCODER\_TYPE and paramValue = ND\_QUADRATURE\_ENCODER\_X2.

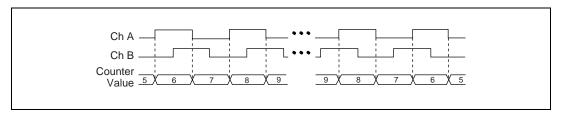



Figure 2-15. Position Measurement for X2 Encoders

• ND\_QUADRATURE\_ENCODER\_X4—As shown in Figure 2-16, the counter increments or decrements on each edge of channels A and B for X4 encoding. Whether the counter increments or decrements depends on which channel leads the other. Each cycle results in four increments or decrements. To use this encoder mode, use GPCTR\_Change\_Parameter with **paramID** = ND\_ENCODER\_TYPE and **paramValue** = ND\_QUADRATURE\_ENCODER\_X4.

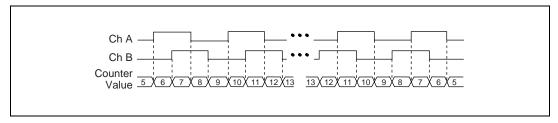



Figure 2-16. Position Measurement for X4 Encoders

ND\_TWO\_PULSE\_COUNTING—As shown in Figure 2-17, two pulse decoding supports
two channels: channels A and B. A pulse on channel A causes the counter to increment
on its rising edge. A pulse on channel B causes the counter to decrement on its rising
edge. The Z channel is not used for two pulse decoding.

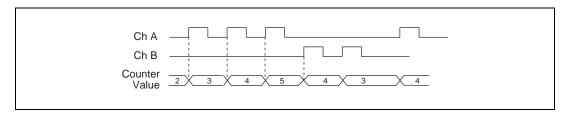



Figure 2-17. Position Measurement Using Two Pulse Encoders

#### paramID = ND\_GATE

This signal controls the operation of the general-purpose counter in some applications. The default values of **paramValue** for **paramID** = ND\_GATE are shown in Table 2-17.

Table 2-17. Legal Values for paramValue when paramID = ND\_GATE and gpctrNum = ND\_COUNTER\_X.

| E Series, 671X, and<br>445X Devices                                                                                      | 660X Devices                                                                                             | 455X Devices                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| ND_PFI_0 through ND_PFI_9—the 10 I/O connector pins.1                                                                    | ND_PFI_38, ND_PFI_34,<br>ND_PFI_30, ND_PFI_26,<br>ND_PFI_22, ND_PFI_18,<br>ND_PFI_14, and                | ND_PFI_30, ND_PFI_26,<br>ND_PFI_22, ND_PFI_18,<br>ND_PFI_14, and ND_PFI_10.                                                                   |
| ND_RTSI_0 through ND_RTSI_6—the seven RTSI lines.                                                                        | ND_PFI_14, and ND_PFI_10.2  ND_RTSI_0 through ND_RTSI_6—the seven RTSI                                   | ND_RTSI_0 through ND_RTSI_6—the seven RTSI lines.                                                                                             |
| ND_IN_START_TRIGGER and ND_IN_STOP_TRIGGER—the input section triggers.                                                   | lines.  ND_OTHER_GPCTR_OUTPUT (See Table 2-22 for definition                                             | ND_OTHER_GPCTR_OUTPUT (See Table 2-22 for definition of other counter).                                                                       |
| ND_OTHER_GPCTR_OUTPUT— the output of the other general-purpose counter (See Table 2-22 for definition of other counter). | of other counter).  ND_OTHER_GPCTR_SOURCE— the selected source of the other general-purpose counter (See | ND_OTHER_GPCTR_SOURCE—<br>the selected source of the other<br>general-purpose counter (See<br>Table 2-22 for definition of<br>other counter). |
| ND_LOW—sets the gate to ground or low.                                                                                   | Table 2-22 for definition of other counter).                                                             | ND_SOURCE—source of the counter.                                                                                                              |
| ND_NONE—turns off gating for the data operation.                                                                         | ND_SOURCE—source of the counter.                                                                         | ND_LOW—sets the gate to ground or low.                                                                                                        |
|                                                                                                                          | ND_LOW—sets the gate to ground or low.                                                                   | ND_NONE—turns off gating for the data operation.                                                                                              |
|                                                                                                                          | ND_NONE-turns off gating for the data operation.                                                         |                                                                                                                                               |

<sup>&</sup>lt;sup>1</sup> ND\_PFI\_2 and ND\_PFI\_5 not valid for 455*X* devices. PCI-4453 and PCI-4454 devices do not have I/O connections for PFI pins or general purpose counter outputs.

<sup>&</sup>lt;sup>2</sup> For 6601 devices, only ND\_PFI\_38 through ND\_PFI\_26 apply.

| gpctrNum     | E Series, 671X and<br>445X Devices | 660X Devices <sup>1</sup> | 455X Devices             |
|--------------|------------------------------------|---------------------------|--------------------------|
| ND_COUNTER_0 | ND_PFI9                            | ND_PFI_38                 | not exposed <sup>2</sup> |
| ND_COUNTER_1 | ND_PFI4                            | ND_PFI_34                 | not exposed <sup>2</sup> |
| ND_COUNTER_2 | N/A                                | ND_PFI_30                 | ND_PFI_30                |
| ND_COUNTER_3 | N/A                                | ND_PFI_26                 | ND_PFI_26                |
| ND_COUNTER_4 | N/A                                | ND_PFI_22                 | N/A                      |
| ND_COUNTER_5 | N/A                                | ND_PFI_18                 | N/A                      |
| ND_COUNTER_6 | N/A                                | ND_PFI_14                 | N/A                      |
| ND_COUNTER_7 | N/A                                | ND_PFI_10                 | N/A                      |

Table 2-18. Default Gate Selection

Use this function with **paramID** = ND\_GATE\_POLARITY to select polarity of the gate signal.

#### paramID = ND\_GATE\_POLARITY

This gate signal controls the operation of the general-purpose counter in some applications. In those applications, you can use polarity of the gate signals to modify behavior of the counter. Corresponding legal values for **paramValue** are as follows:

- ND\_LOW\_TO\_HIGH or ND\_POSITIVE
- ND\_HIGH\_TO\_LOW or ND\_NEGATIVE

The meaning of the two ND\_GATE\_POLARITY selections is described in the GPCTR\_Set\_Application function.

#### paramID = ND\_Z\_INDEX\_VALUE (NI-TIO based devices only)

#### **paramID** = ND\_Z\_INDEX\_ACTIVE (NI-TIO based devices only)

This parameter allows automatic reloading of the counter when a gate edge occurs. The counter is reloaded to the value set by the **paramID** = ND\_Z\_INDEX\_VALUE. The legal vales for this are ND\_YES and ND\_NO. This **paramID** with **paramValue** = ND\_YES can be used for position measurement applications that involve quadrature encoders. The Z-Index pulse of a

<sup>&</sup>lt;sup>1</sup> For 6601 devices, only counters 0 through 3 apply.

<sup>&</sup>lt;sup>2</sup> You must explicitly set the source of these counters with **paramID**= ND\_GATE.

quadrature encoder can be connected to the gate pin. With this setting, the counter will reload every time it sees a high level on the Z pin and channels A and B are both in the low state.

Figure 2-18 shows an example of X4 quadrature decoding. The reload of the counter occurs when A and B are low and Z is high. Also, the actual reload occurs within one maxtimebase period after the reload phase becomes true. After the reload occurs, the counter continues to count from the specified reload value.

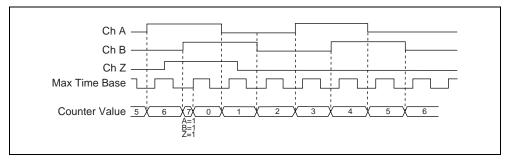



Figure 2-18. X4 Quadrature Decoding with Z indexing

You can enable Z-Index pulse for quadrature encoders by making a GPCTR\_Change\_Parameter call with paramID = ND\_Z\_INDEX\_ACTIVE and **paramValue** = ND\_YES. The Z-Index signal should be connected to default gate for the counter that is being used. The value to which the count should reset in the event of a Z-Index pulse can be specified by making a GPCTR\_Change\_Parameter call with **paramID** = ND Z INDEX VALUE.



**Note** By default, the counter will start counting from 0. You can alter this by calling GPCTR\_Change\_Parameter with a paramID set to ND\_INITIAL\_COUNT. A good technique for setting the initial value is to set it in an invalid range. When the counter receives a Z-Index, the value of the counter is placed in a valid range. This technique allows you to detect the initial Z-Index.

#### An example use of this **paramID** is shown below:

```
Create u32 variable gpctrNum;
Create u32 variable counterValue;
gpctrNum = ND_COUNTER_0
GPCTR_Control (deviceNumber, gpctrNum, ND_RESET)
GPCTR_Set_Application(deviceNumber, gpctrNum, ND_POSITION_MSR)
```

```
GPCTR_Change_Parameter (deviceNumber, gpctrNum,
   ND_ENCODER_TYPE, ND_QUADRATURE_ENCODER_X1)
/*specify that the counter reloads to value of 1000 every time a
Z-Index pulse occurs*/
GPCTR_Change_Parameter (deviceNumber, qpctrNum, ND_Z_INDEX_ACTIVE,
ND_YES);
GPCTR Change Parameter (deviceNumber, gpctrNum, ND Z INDEX VALUE,
1000)
/*load the counter initially with a bogus value for Z-Index
detection*/
GPCTR_Change_Parameter (deviceNumber, gpctrNum, ND_INITIAL_COUNT,
GPCTR_Control (deviceNumber, gpctrNum, ND_PROGRAM)
Repeat as long as required by your application
{
/*you can check for a valid value for counterValue here*/
   GPCTR_Watch (deviceNumber, qpctrNum, ND_COUNT, counterValue)
   Output counterValue
}
GPCTR_Control (deviceNumber, gpctrNum, ND_RESET)
```

#### paramID = ND\_AUX\_LINE (NI-TIO based devices only)

This signal controls the operation of the general-purpose counter in two signal edge separation measurements. Corresponding legal values for **paramValue** are shown below:

- ND\_PFI\_37, ND\_PFI\_33, ND\_PFI\_29, ND\_PFI\_25, ND\_PFI\_21, ND\_PFI\_17, ND\_PFI\_13, ND\_PFI\_9
- ND\_RTSI\_0 through ND\_RTSI\_6—the seven RTSI lines.
- ND\_OTHER\_GPCTR\_OUTPUT (See Table 2-22 for definition of the other counter).
- ND\_OTHER\_GPCTR\_SOURCE—the selected source of the other general-purpose counter (See Table 2-22 for definitions of other counters).
- ND\_SOURCE—the source of the counter
- ND\_LOW—sets the aux line to ground



**Note** ND\_PFI\_37 and ND\_PFI\_33 are not available on 455X devices.

The default values of **paramValue** for **paramID** = ND\_AUX\_LINE are shown in Table 2-19.

| gpctrNum     | 660X Devices <sup>1</sup> | 455X Devices             |
|--------------|---------------------------|--------------------------|
| ND_COUNTER_0 | ND_PFI_37                 | not exposed <sup>2</sup> |
| ND_COUNTER_1 | ND_PFI_33                 | not exposed <sup>2</sup> |
| ND_COUNTER_2 | ND_PFI_29                 | ND_PFI_29                |
| ND_COUNTER_3 | ND_PFI_25                 | ND_PFI_25                |
| ND_COUNTER_4 | ND_PFI_21                 | N/A                      |
| ND_COUNTER_5 | ND_PFI_17                 | N/A                      |
| ND_COUNTER_6 | ND_PFI_13                 | N/A                      |
| ND_COUNTER_7 | ND_PFI_9                  | N/A                      |

Table 2-19. Default Aux Line Selection

#### paramID = ND\_AUX\_LINE\_POLARITY (NI-TIO based devices only)

This signal controls the operation of the general-purpose counters in the two signal edge separation measurements. In those applications you can use polarity of the aux line signals to modify behavior of a counter. Corresponding legal values for **paramValue** are shown below:

- ND\_POSITIVE
- ND\_NEGATIVE

The meaning of the two ND\_AUX\_LINE\_POLARITY selections is described in the GPCTR\_Set\_Application function.

#### paramID = ND\_INITIAL\_COUNT

The general-purpose counter starts counting from this number when the counter is configured for one of the simple event counting and time measurement applications. Corresponding legal values for **paramValue** are shown in Table 2-20.

**Table 2-20.** Legal Values for **paramValue** when **paramID** = ND\_INITIAL\_COUNT.

| E Series, 671X and 445X Devices | 660X and 455X Devices         |
|---------------------------------|-------------------------------|
| 0 through 2 <sup>24</sup> – 1   | 0 through 2 <sup>32</sup> – 1 |

For pulse train generation and frequency shift keying applications, this number specifies an initial delay after arming the counter but before the pulse train generation actually starts. Valid values are between 2 and  $2^{32}$  –1 and are only applicable for NI-TIO based devices.

<sup>&</sup>lt;sup>1</sup> For 6601 devices, only counters 0 through 3 apply.

<sup>&</sup>lt;sup>2</sup> You must explicitly set the source of these counters with **paramID**= ND\_AUX\_LINE.

#### paramID = ND\_COUNT\_1, ND\_COUNT\_2, ND\_COUNT\_3, ND\_COUNT\_4

The general-purpose counter uses these numbers for pulse width specifications when the counter is configured for one of the simple pulse and pulse train generation applications. Corresponding legal values for **paramValue** are shown in Table 2-21.

Table 2-21. Legal Values for paramValue when paramID = ND\_COUNT\_1, ND\_COUNT\_2, ND\_COUNT\_3, and ND\_COUNT\_4.

| E Series, 671X and 445X Devices | 660X and 455X Devices         |
|---------------------------------|-------------------------------|
| 2 through 2 <sup>24</sup> – 1   | 2 through 2 <sup>32</sup> – 1 |

You may seamlessly change the frequency of your pulse train if you call GPCTR\_Set\_Application with **application** = ND\_PULSE\_TRAIN\_GNR. To do so, you can call GPCTR\_Change\_Parameter with **paramID** = ND\_COUNT\_1 or ND\_COUNT\_2 after you have started your pulse train. Then call GPCTR\_Control with **action** = ND\_SWITCH\_CYCLE to activate the new duty cycle.

#### paramID = ND\_AUTOINCREMENT\_COUNT

The value specified by ND\_COUNT\_1 is incremented by the value selected by ND\_AUTOINCREMENT\_COUNT every time the counter is reloaded with the value specified by ND\_COUNT\_1.

For example, with this feature you can generate retriggerable delayed pulses with incrementally increasing delays. You can then use these pulses for applications such as equivalent time sampling (ETS). Corresponding legal values for **paramValue** are 0 through  $2^8 - 1$ .

#### paramID = ND\_UP\_DOWN

When the application is ND\_SIMPLE\_EVENT\_CNT or ND\_BUFFERED\_EVENT\_CNT, you can use the up or down control options of the counters. Software or hardware can perform the up or down control.

#### **Software Control**

The software up or down control is available by default; if you do not use the GPCTR\_Change\_Parameter function with **paramID** set to ND\_UP\_DOWN, the counter is configured for the software up or down control and starts counting up or down as required by your application. To set the counting direction prior to counting, use the GPCTR\_Change\_Parameter function with the **paramID** set to ND\_UP\_DOWN and the **paramValue** set to ND\_COUNT\_DOWN. To change the counting direction while counting is in progress, use the GPCTR\_Control function with the action set to ND\_COUNT\_UP or ND\_COUNT\_DOWN.

#### Hardware Control

To use a hardware signal to control the counting direction, use I/O connector lines as shown in Table 2-22; the counter will count down when the I/O line is in the low state and up when

it is in the high state. Use the GPCTR\_Change\_Parameter function with the **paramID** set to ND\_UP\_DOWN and the **paramValue** set to ND\_HARDWARE to take advantage of this counter feature.

| gpctrNum     | E Series and 671X Devices | 660X Devices <sup>1</sup> | 455X Devices             |
|--------------|---------------------------|---------------------------|--------------------------|
| ND_COUNTER_0 | Digital I/O Line 6        | ND_PFI_37                 | not exposed <sup>2</sup> |
| ND_COUNTER_1 | Digital I/O Line 7        | ND_PFI_33                 | not exposed2             |
| ND_COUNTER_2 | N/A                       | ND_PFI_29                 | ND_PFI_29                |
| ND_COUNTER_3 | N/A                       | ND_PFI_25                 | ND_PFI_25                |
| ND_COUNTER_4 | N/A                       | ND_PFI_21                 | N/A                      |
| ND_COUNTER_5 | N/A                       | ND_PFI_17                 | N/A                      |
| ND_COUNTER_6 | N/A                       | ND_PFI_13                 | N/A                      |
| ND_COUNTER_7 | N/A                       | ND_PFI_9                  | N/A                      |

Table 2-22. Default Up/Down Selection

#### paramID = ND BUFFER MODE

Corresponding legal values for **paramValue** are shown below:

- ND\_SINGLE for single buffer operation.
- ND\_CONTINUOUS for continuous buffer operation.

#### paramID = ND OUTPUT MODE

This value changes the output mode from default toggle (the output of the counter toggles on each terminal count) to pulsed (the output of the counter makes a pulse on each terminal count). A counter reaches its terminal count each time it reaches zero from either direction. The corresponding settings of **paramValue** are ND\_PULSE and ND\_TOGGLE. Also, you might need to enable your output pin with Select\_Signal.

#### paramID = ND\_OUTPUT\_POLARITY

This **paramID** allows you to change the output polarity from default positive (the normal state of the output is TTL low) to negative (the normal state of the output is TTL-high). The corresponding settings of **paramValue** are ND\_POSITIVE and ND\_NEGATIVE. Also, you might need to enable your output pin with Select\_Signal.

## paramID = ND\_COUNTING\_SYNCHRONOUS (for NI-TIO based devices only)

This **paramID** allows the counter to count synchronously or asynchronously. By default, the NI-TIO and STC count asynchronously.

<sup>&</sup>lt;sup>1</sup> For 6601 devices, only counters 0 through 3 apply.

<sup>2</sup> You cannot use up/down pins with counters 0 and 1.

Asynchronous counting can cause problems during a buffered acquisition when no source edges are present between two gate edges. A false repetitive reading is made in this case.

To get around this problem, set the NI-TIO into a synchronous counting mode. This always latches the correct value when you encounter no source edges between two gate edges. If you receive source edges at a rate greater than or equal to half of the maximum timebase, then you should not use synchronous mode. Use synchronous mode for buffered acquisitions with a source slower than half the maximum timebase only.

Valid value for **paramValue** are ND\_NO and ND\_YES.

## **Using This Function**

This function lets you customize the counter for your application. You can use this function after the GPCTR\_Set\_Application function, and before GPCTR\_Control function with **action** = ND\_PREPARE or **action** = ND\_PROGRAM. You can call this function as many times as you need to.

# GPCTR\_Config\_Buffer

## **Format**

status = GPCTR\_Config\_Buffer (deviceNumber, gpctrNum, reserved, numPoints, buffer)

## **Purpose**

Assigns a buffer that NI-DAQ will use for a buffered counter operation.

### **Parameters**

## Input

| Name         | Туре | Description                               |
|--------------|------|-------------------------------------------|
| deviceNumber | i16  | assigned by configuration utility         |
| gpctrNum     | u32  | number of the counter to use              |
| reserved     | u32  | reserved parameter, must be 0             |
| numPoints    | u32  | number of data points the buffer can hold |

## Input/Output

| Name   | Туре  | Description                 |
|--------|-------|-----------------------------|
| buffer | [u32] | conversion samples returned |

### Parameter Discussion

The legal range for **gpctrNum** is given in terms of constants defined in a header file. The header file you should use depends on the language you are using:

- C programmers—NIDAQCNS.H (DATAACQ.H for LabWindows/CVI)
- BASIC programmers—NIDAQCNS.INC (Visual Basic for Windows programmers should refer to the *Programming Language Considerations* section in Chapter 1, *Using the NI-DAQ Functions*, for more information.)
- Pascal programmers—NIDAQCNS.PAS

**gpctrNum** indicates which counter to program. Legal values for this parameter are in Table 2-13.

**numPoints** is the number of data points the **buffer** can hold. The definition of a data point depends on the application the counter is used for. Legal range is 2 through  $2^{32} - 1$ .

When you use the counter for one of the buffered event counting or buffered time measurement operations, a data point is a single counted number.

**buffer** is an array of unsigned 32-bit integers.

## **Using This Function**

You need to use this function to use a general-purpose counter for buffered operation. You should call this function after calling the GPCTR\_Set\_Application function.

NI-DAQ transfers counted values into the **buffer** assigned by this function when you are performing a buffered counter operation.

If you are using the general-purpose counter for

- ND\_BUFFERED\_EVENT\_CNT,
- ND\_BUFFERED\_PERIOD\_MSR,
- ND\_BUFFERED\_SEMI\_PERIOD\_MSR,
- ND\_BUFFERED\_POSITION\_MSR,
- ND\_BUFFERED\_PULSE\_WIDTH\_MSR, or
- ND\_BUFFERED\_TWO\_SIGNAL\_EDGE\_SEPARATION\_MSR

you should wait for the operation to be completed before accessing the buffer if ND\_BUFFER\_MODE = ND\_SINGLE

If you specify ND\_BUFFERED\_MODE to be ND\_SINGLE, you set up a single buffered operation. For single buffered operations, the operation stops when the buffer has been filled—if you wish to acquire more data, you need to set up the operation again. If you wish to acquire data continuously, you should set ND\_BUFFER\_MODE to ND\_CONTINUOUS. In continuous buffered operation mode you can use GPCTR\_Read\_Buffer to access parts of the buffer while the operation is in progress.

# **GPCTR\_Control**

## **Format**

status = GPCTR\_Control (deviceNumber, gpctrNum, action)

## **Purpose**

Controls the operation of the general-purpose counter.

## **Parameters**

# Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |
| gpctrNum     | u32  | number of the counter to use      |
| action       | u32  | the action NI-DAQ takes           |

### Parameter Discussion

Legal ranges for the **gpctrNum** and **action** are given in terms of constants defined in a header file. The header file you should use depends on the language you are using:

- C programmers—NIDAQCNS.H (DATAAQC.H for LabWindows/CVI)
- BASIC programmers—NIDAQCNS.INC (Visual Basic for Windows programmers should refer to the *Programming Language Considerations* section in Chapter 1, *Using the NI-DAQ Functions*, for more information.)
- Pascal programmers—NIDAQCNS.PAS

**gpctrNum** indicates which counter to program. Legal values for this parameter are shown in Table 2-13.

**action** is what NI-DAQ performs with the counter. Legal values for this parameter are as follows.

Table 2-23. Legal Values for the action Parameter

| action          | Description                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND_PREPARE      | Prepare the general-purpose counter for the operation selected by invocations of the GPCTR_Set_Application and (optionally) GPCTR_Change_Parameter function. Do not arm the counter.                                                                                                                                                                                                  |
| ND_ARM          | Prepares the counter to start, for example, with the gate going high. If the gate has already gone high, the counter starts counting.                                                                                                                                                                                                                                                 |
| ND_DISARM       | Restores the state of the counter, as if you had not called ND_ARM, regardless of whether the counter is currently counting. This parameter works like an ND_STOP parameter because it stops the counter.                                                                                                                                                                             |
| ND_PROGRAM      | ND_PREPARE and then ND_ARM the counter.                                                                                                                                                                                                                                                                                                                                               |
| ND_RESET        | Returns the counter to the power-on state but does not change the polarity.                                                                                                                                                                                                                                                                                                           |
| ND_COUNT_UP     | Change the counting direction to UP. For <b>gpctrNum</b> = ND_COUNTER_X only. See <i>Using This Function</i> below.                                                                                                                                                                                                                                                                   |
| ND_COUNT_DOWN   | Change the counting direction to DOWN. For <b>gpctrNum</b> = ND_COUNTER_X only. See <i>Using This Function</i> below.                                                                                                                                                                                                                                                                 |
| ND_SWITCH_CYCLE | This action can be used to change the properties of a continuous pulse that was started using GPCTR_Set_Application with application = ND_PULSE_TRAIN_GNR. If you use ND_SWITCH_CYCLE after the counter is armed, the counter will be reloaded with the latest values specified by GPCTR_Change_Parameter with paramID = ND_COUNT_1 and ND_COUNT_2. For gpctrNum = ND_COUNTER_X only. |
| ND_SNAPSHOT     | This action sets several buffer-related readable parameters.                                                                                                                                                                                                                                                                                                                          |

## **Using This Function**

You should use the following sequence of calls to start your counter:

- 1. GPCTR\_Set\_Application
- 2. GPCTR\_Change\_Parameter (optional)
- 3. GPCTR\_Config\_Buffer (optional)
- 4. GPCTR\_Control (to start the counter)

Typically, you need only one GPCTR\_Control call (as shown above) with **action**= ND\_PROGRAM to prepare and arm your computer. If you need to minimize the time between a software event (a call to GPCTR\_Control) and a hardware action (when the counter starts counting), use two calls to GPCTR\_Control instead. The first call with **action** = ND\_PREPARE prepares your counter for the application you specify. The second call with **action** = ND\_ARM arms the counter.

You can use this function with **action** = ND\_RESET when you want to halt the operation the general-purpose counter is performing.

Use actions ND\_COUNT\_UP and ND\_COUNT\_DOWN to change the counting direction. You can do this only when your application is ND\_SIMPLE\_EVENT\_CNT or ND\_BUFFERED\_EVENT\_CNT and the counter is configured for software control of the counting direction for up or down.

Use action ND\_SWITCH\_CYCLE only if your application is ND\_PULSE\_TRAIN\_GNR.

Use action ND\_SNAPSHOT for capturing real-time information on buffered acquisitions. This action sets the following parameters:

- ND READ MARK H SNAPSHOT
- ND\_READ\_MARK\_L\_SNAPSHOT
- ND\_WRITE\_MARK\_H\_SNAPSHOT
- ND\_WRITE\_MARK\_L\_SNAPSHOT
- ND\_BACKLOG\_H\_SNAPSHOT
- ND\_BACKLOG\_L\_SNAPSHOT
- ND ARMED SNAPSHOT

You can read these values with a GPCTR\_Watch call as explained in the GPCTR\_Watch function description.

- ND\_SECONDS—for gpctrNum = ND\_RTC\_X only.
- ND\_NANO\_SECONDS—for gpctrNum = ND\_RTC\_X only.

# **GPCTR\_Read\_Buffer**

## **Format**

status = GPCTR\_Read\_Buffer (deviceNumber, gpctrNum, readMode, readOffSet, numPtsToRead, timeOut, numPtsRead,buffer)

# **Purpose**

Returns the data from a asynchronous counter input operation. The read mode and offset combined allow you to specify the location from which to read the data.

Chapter 2

## **Parameters**

## Input

| Name         | Type | Description                                             |
|--------------|------|---------------------------------------------------------|
| deviceNumber | i16  | assigned by configuration utility                       |
| gpctrNum     | u32  | number of the counter to use                            |
| readMode     | u32  | the parameter to set the reading point in the buffer    |
| readOffSet   | i32  | the offset from the reading point                       |
| numPtsToRead | u32  | the number of points to read                            |
| timeOut      | f64  | time for which this function will wait before returning |

# Output

| Name       | Type | Description                        |
|------------|------|------------------------------------|
| numPtsRead | u32  | the number of points actually read |

# Input/Output

| Name   | Type  | Description                 |
|--------|-------|-----------------------------|
| buffer | [u32] | conversion samples returned |

# **Parameter Discussion**

**gpctrNum** indicates which counter to program. Legal values for this parameter are shown in Table 2-13.

The type of read operation specified in **readMode** is used in conjunction with the **readOffSet** to compute the reading mark. Basically, read mark = reading point (specified by **readMode**) + readOffSet. The readMode can have the following legal values:

- ND\_READ\_MARK—The reading point is placed at the location of the current read mark.
- ND\_BUFFER\_START—The reading point is placed at the start of the buffer.
- ND\_WRITE\_MARK—The reading point is placed at a position in the buffer that has the latest data.

**readOffSet** is the offset that is added to the reading point specified by **readMode** to compute the location in the buffer from which data is to be read.

**numPtsToRead** is the number of points to retrieve from the buffer being used.

timeOut is the time in seconds that specifies the maximum amount of time this function should wait before returning. If **timeOut** is 0, this function returns immediately. If the requested amount of data is not available, the appropriate error code is returned.

**status** is the return value that specifies success (return value 0) or **overWriteError**.

**numPtsRead** is passed by reference. When this function returns, **numPtsRead** holds the value of the actual number of inputs that were read.

**buffer** is the destination buffer to hold the retrieved data. Its size should be > **numPts**.

# **Using This Function**

You need to use this function for reading data from a buffer during continuous-buffered or asynchronous data acquisition. Reading the buffer yourself can be dangerous—especially during continuous-buffered operations.

Single buffered operations fill the buffer with data from beginning to end. After the buffer has been filled, the counter disarms itself.

Continuous-buffered operations fill the buffer in a circular manner. If data is not read quickly enough, then it is overwritten. GPCTR\_READ\_BUFFER takes all this into account when reading the buffer.

This function can report multiple errors. There are three types of errors that this function can report. Here are the rules of precedence:

**Miscellaneous Errors**—These types of errors such as invalid errors will typically prevent the function from operating. These types of errors are reported over all other types of errors.

- overWriteError—This error can be reported during buffered operations. It indicates that the user did not read data from the buffer quickly enough and data was overwritten. If miscellaneous error occurs repeatedly during a read function, this can cause an overWriteError. The miscellaneous errors will be reported over the overWriteError. However, the overWriteError will be reported the next time a miscellaneous error does not occur during a GPCTR\_Watch or GPCTR\_Read call. Finally, the overWriteError is only issued once per overwrite. If one or more over write errors occur, then one over write error will be issued during the next GPCTR\_Watch or GPCTR\_Read call.
- **dataLossError**—This error can be reported during buffered operations. It indicates that the internal counter FIFO overflowed. Once this errors occurs, it is repeatedly reported until the end of the acquisition. All subsequent <code>GPCTR\_Watch</code> and <code>GPCTR\_Read</code> calls will return this error. Any other error will be reported over a dataLossError.

# **GPCTR\_Set\_Application**

## **Format**

status = GPCTR\_Set\_Application (deviceNumber, gpctrNum, application)

## **Purpose**

Selects the application for which you use the general-purpose counter.

### **Parameters**

## Input

| Name         | Туре | Description                              |
|--------------|------|------------------------------------------|
| deviceNumber | i16  | assigned by configuration utility        |
| gpctrNum     | u32  | number of the counter to use             |
| application  | u32  | application for which to use the counter |

### Parameter Discussion

Legal ranges for **gpctrNum** and **application** are given in terms of constants that are defined in a header file. The header file you should use depends on which of the following languages you are using:

- C programmers—NIDAQCNS.H (DATAACQ.H for LabWindows/CVI)
- BASIC programmers—NIDAQCNS.INC (Visual Basic for Windows programmers should refer to the *Programming Language Considerations* section in Chapter 1, *Using the NI-DAQ Functions*, for more information.)
- Pascal programmers—NIDAQCNS.PAS

**gpctrNum** indicates which counter to program. Legal values for this parameter are shown in Table 2-13.

## application can be one of the following.

Table 2-24. Descriptions for application

Chapter 2

| Group                         | Application                                    | Description                                                                                                 |
|-------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Simple                        | ND_SIMPLE_EVENT_CNT                            | Simple event counting                                                                                       |
| Counting and Time             | ND_SINGLE_PERIOD_MSR                           | Simple single period measurement                                                                            |
| Measurement                   | ND_SINGLE_PULSE_WIDTH_MSR                      | Simple single pulse-width measurement                                                                       |
|                               | ND_TRIG_PULSE_WIDTH_MSR                        | Pulse-width measurement you can use for recurring pulses                                                    |
|                               | ND_TWO_SIGNAL_EDGE_SEPARATION_MSR              | Measurement between edges of two<br>separate signals (NI-TIO based devices<br>only)                         |
|                               | ND_POSITION_MSR                                | Tracks position for motion encoder based applications (NI-TIO based devices only)                           |
| Simple Pulse                  | ND_SINGLE_PULSE_GNR                            | Generation of a single pulse                                                                                |
| and Pulse Train<br>Generation | ND_SINGLE_TRIG_PULSE_GNR                       | Generation of a single triggered pulse                                                                      |
|                               | ND_RETRIG_PULSE_GNR                            | Generation of a retriggerable single pulse                                                                  |
|                               | ND_PULSE_TRAIN_GNR                             | Generation of pulse train                                                                                   |
|                               | ND_FSK                                         | Frequency Shift-Keying                                                                                      |
| Buffered                      | ND_BUFFERED_EVENT_CNT                          | Buffered, asynchronous event counting                                                                       |
| Counting and Time Measurement | ND_BUFFERED_PERIOD_MSR                         | Buffered, asynchronous period measurement                                                                   |
| Measurement                   | ND_BUFFERED_SEMI_PERIOD_MSR                    | Buffered, asynchronous semi-period measurement                                                              |
|                               | ND_BUFFERED_PULSE_WIDTH_MSR                    | Buffered, asynchronous pulse-width measurement                                                              |
|                               | ND_BUFFERED_TWO_SIGNAL_EDGE_<br>SEPARATION_MSR | Buffered, asynchronous measurement<br>between edges on two separate signals.<br>(NI-TIO based devices only) |
|                               | ND_BUFFERED_POSITION_MSR                       | Buffered, position tracking of quadrature encoders (NI-TIO based devices only)                              |

\_GNR indicates Generation

# **Using This Function**

NI-DAQ requires you to select a set of parameters so that it can program the counter hardware. Those parameters include, for example, signals to be used as counter source and gate and the polarities of those signals. A full list of the parameters is given in the description of the GPCTR\_Change\_Parameter function. By using the GPCTR\_Set\_Application function, you assign specific values to all of those parameters. If you want to change the default settings used by this function, you can alter them by using the GPCTR\_Change\_Parameter function.

When using DMA for buffered GPCTR operations on E Series and 445*X* devices, you should use the internal 20 MHz timebase over the internal 100 kHz timebase. The 100 kHz timebase does not work correctly when you are using DMA. For measuring gate signals slower than the internal 20 MHz timebase will allow, or when you need to use DMA, we recommend using external timebases. You can use DMA operations on typical 486-based machines without any errors for gate signals of up to 50 kHz using the internal 20 MHz timebase. Trying to achieve rates higher than 50 kHz might cause **gpctrDataLossError**. This error might cause some computers to lock up because of a memory parity error.

The behavior of the counter you are preparing for an application with this function depends on **application**, your future calls of the GPCTR functions, and the signals supplied to the counter. The following paragraphs illustrate typical scenarios.

```
application = ND_SIMPLE_EVENT_CNT
```

In this application, the counter is used for simple counting of events. By default, the events are low-to-high transitions on the default source pins (see Table 2-16 for default source selections). The counter counts up starting from 0, and it is not gated. You can set the gate by using GPCTR\_Change\_Parameter. This allows you to gate or control whether the counter is active. The counter is active only when the gate is high.

Figure 2-19 shows one possible scenario of a counter used for ND\_SIMPLE\_EVENT\_CNT after the following programming sequence:

```
GPCTR_Control(deviceNumber, gpctrNum, ND_RESET)
GPCTR_Set_Application(deviceNumber, gpctrNum, ND_SIMPLE_EVENT_CNT)
GPCTR_Control(deviceNumber, gpctrNum, ND_PROGRAM)
```

In Figure 2-19, the following behavior is present:

- Source is the signal present at the counter source input.
- Count is the value you would read from the counter if you called the GPCTR\_Watch function with **entityID** = ND\_COUNT. The different numbers illustrate behavior at different times

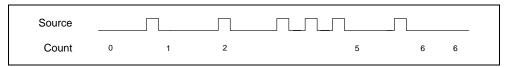



Figure 2-19. Simple Event Counting

The following pseudocode continuation of the example given earlier illustrates what you can do to read the counter value continuously (GPCTR\_Watch function with  $entityID = ND\_COUNT$  does this) and print it:

```
Repeat Forever
{
GPCTR_Watch(deviceNumber, gpctrNum, ND_COUNT, counterValue)
Output counterValue.
}
```

When the counter reaches terminal count (TC), it rolls over and keeps counting. TC is reached when a counter reaches zero from either direction. To check if this occurred, use GPCTR\_Watch function with **entityID** set to ND\_TC\_REACHED. Refer to Table 2-25 for TC for E Series, 671X, 445X, 455X, and 660X devices.

Table 2-25. Terminal Count

| E Series, 671X and 445X Devices | 660 <i>X</i> and 455 <i>X</i> Devices |
|---------------------------------|---------------------------------------|
| $2^{24}-1$                      | $2^{32}-1$                            |

Typically, you will find modifying the following parameters through the GPCTR\_Change\_Parameter function useful when the counter **application** is ND\_SIMPLE\_EVENT\_CNT. You can change the following:

- ND\_SOURCE to any value
- ND\_SOURCE\_POLARITY to ND\_HIGH\_TO\_LOW
- ND\_GATE to any legal value listed in the GPCTR\_Change\_Parameter function description.
- ND\_GATE\_POLARITY to ND\_NEGATIVE to count only when the gate is low.

You can use the GPCTR\_Change\_Parameter function after calling GPCTR\_Set\_Application and before calling GPCTR\_Control with **action** = ND\_PROGRAM or ND\_PREPARE.

## application = ND\_SINGLE\_PERIOD\_MSR

In this application, the counter is used for a single measurement of the time interval between two transitions of the same polarity of the gate signal. By default, the events are low-to-high transitions on the default gate connector pins (see Table 2-18). The counter uses the 20 MHz internal timebase (ND\_INTERNAL\_20\_MHZ) as its source, so the resolution of measurement is 50 ns. The counter counts up starting from 0.

With the default 20 MHz timebase, combined with the counter width (24 bits), you can measure a time interval between 100 ns and 0.8 s long. For the NI-TIO based devices, the 32 bit wide counters allow you to measure a time interval between 100 ns and 214 s long using this timebase. If you wish to achieve greater resolution, you can use max-timebase (ND\_INTERNAL\_MAX\_TIMEBASE) instead.

Figure 2-20 shows one possible scenario of a counter used for ND\_SINGLE\_PERIOD\_MSR after the following programming sequence:

```
GPCTR_Control(deviceNumber, gpctrNum, ND_RESET)
GPCTR_Set_Application(deviceNumber, gpctrNum, ND_SINGLE_PERIOD_MSR)
GPCTR_Control(deviceNumber, gpctrNum, ND_PROGRAM)
```

In Figure 2-20, the following behavior is present:

- Gate is the signal present at the counter gate input.
- Source is the signal present at the counter source input.
- Count is the value you would read from the counter if you called the GPCTR\_Watch function with **entityID** = ND\_COUNT. The different numbers illustrate behavior at different times.
- Armed is the value you would read from the counter if you called the GPCTR\_Watch function with **entityID** = ND\_ARMED. The different values illustrate behavior at different times.

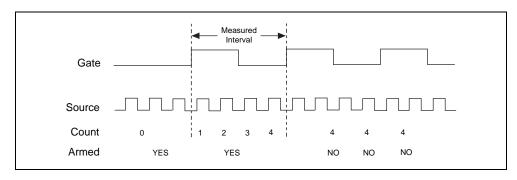



Figure 2-20. Single Period Measurement

Use the GPCTR\_Watch function with **entityID** = ND\_ARMED to monitor the progress of the counting process. This measurement completes when **entityValue** becomes ND\_NO. When the counter is no longer armed, you can retrieve the counted value by using GPCTR\_Watch with **entityID** = ND\_COUNT. You can do this as follows:

```
Create u32 variable counter_armed.
Create u32 variable counted_value.
repeat
{
    GPCTR_Watch(deviceNumber, gpctrNumber, ND_ARMED, counter_armed)
}
until (counter_armed = ND_NO)
GPCTR Watch(deviceNumber, gpctrNumber, ND_COUNT, counted_value)
```

To calculate the measured interval, you need to multiply the counted value by the period corresponding to the timebase you are using. For example, if your ND\_SOURCE is ND\_INTERNAL\_20\_MHz, the interval will be 1/(20 MHz) = 50 ns. If the ND\_COUNT is 4, (Figure 2-20), the actual interval is 4 \* 50 ns = 200 ns.

When the counter reaches terminal count (see Table 2-25), it rolls over and keeps counting. To check if this occurred, use the GPCTR\_Watch function with **entityID** set to ND\_TC\_REACHED.

Typically, you will find modifying the following parameters through the GPCTR\_Change\_Parameter function useful when the counter **application** is ND\_SINGLE\_PERIOD\_MSR. You can change the following:

- ND\_SOURCE to ND\_INTERNAL\_100\_KHZ. With this timebase, you can measure the time interval between 20 µs and 160 s for E Series, 671X, and 445X (24 bits) devices and a time interval of 20 µs and 11.37 hours for NI-TIO based devices (32 bits). The resolution will be lower than that you obtain using the ND\_INTERNAL\_20\_MHZ timebase. For NI-TIO based devices, you can use ND\_INTERNAL\_MAX\_TIMEBASE for higher resolution.
- ND\_SOURCE\_POLARITY to ND\_HIGH\_TO\_LOW.
- ND\_GATE to any legal value listed in the GPCTR\_Change\_Parameter function description.
- ND\_GATE\_POLARITY to ND\_NEGATIVE. The interval will be measured from a high-to-low to the next high-to-low transition of the gate signal.

You can use the GPCTR\_Change\_Parameter function after calling GPCTR\_Set\_Application and before calling GPCTR\_Control with **action** = ND\_PROGRAM or ND\_PREPARE.

To provide an external timebase, you can connect your timebase source to an appropriate PFI pin on the I/O connector and change ND\_SOURCE and ND\_SOURCE\_POLARITY to the appropriate values.

You also can configure the other general-purpose counter for ND\_PULSE\_TRAIN\_GNR and set ND\_SOURCE of this counter to ND\_OTHER\_GPCTR\_TC to measure intervals longer than the interval timebases allow.

### application = ND\_SINGLE\_PULSE\_WIDTH\_MSR

In this application, the counter is used for a single measurement of the time interval between two transitions of the opposite polarity of the gate signal. By default, the measurement is performed between a low-to-high and a high-to-low transition on the default I/O connector gate pin (refer to Table 2-18). The counter uses the 20 MHz internal timebase (ND\_INTERNAL\_20\_MHz) as its source, so the resolution of measurement is 50 ns. The counter counts up starting from zero. For the E Series, 671X and 445X devices with counter width of 24 bits, you can measure a time interval between 100 ns and 0.8 s long. For the NI-TIO based devices, the 32-bit wide counters allow you to measure a time interval between 100 ns and 214 s long using this timebase. If you wish to achieve greater resolution, you may use max-timebase (ND\_INTERNAL\_MAX\_TIMEBASE) instead.

Figure shows one possible scenario of a counter used for ND\_SINGLE\_PULSE\_WIDTH\_MSR after the following programming sequence:

```
GPCTR_Control(deviceNumber, gpctrNum, ND_RESET)
GPCTR_Set_Application(deviceNumber, gpctrNum,
ND_SINGLE_PULSE_WIDTH_MSR)
GPCTR_Control(deviceNumber, gpctrNum, ND_PROGRAM)
```

In Figure 2-21, the following behavior is present:

- Gate is the signal present at the counter gate input.
- Source is the signal present at the counter source input.
- Count is the value you would read from the counter if you called the GPCTR\_Watch function with **entityID** = ND\_COUNT. The different numbers illustrate behavior at different times.
- Armed is the value you read from the counter if you call the GPCTR\_Watch function with entityID = ND\_ARMED. The different values illustrate behavior at different times.

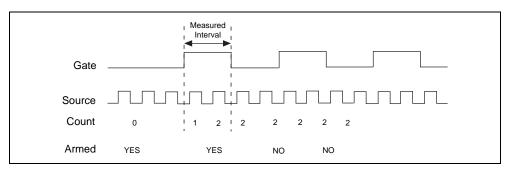



Figure 2-21. Single Pulse Width Measurement

Use the GPCTR\_Watch function with **entityID** = ND\_ARMED to monitor the progress of the counting process. This measurement completes when **entityValue** becomes ND\_NO. When the counter is no longer armed, you can retrieve the counted value by using GPCTR\_Watch with **entityID** = ND\_COUNT, as shown in the following example code:

```
Create u32 variable counter_armed.
Create u32 variable counter_value.
Repeat
{
GPCTR_Watch(deviceNumber, gpctrNumber, ND_ARMED, counter_armed)
}
until (counter_armed = ND_NO)
GPCTR_Watch(deviceNumber, gpctrNumber, ND_COUNT, counter_value)
```

To calculate the measured interval, multiply the counted value by the period corresponding to the timebase you are using. For example, if your ND\_SOURCE is ND\_INTERNAL\_20\_MHz, the interval will be 1/(20 MHz) = 50 ns. If the ND\_COUNT is 4 (Figure 2-20), the actual interval is 4 \* 50 ns = 200 ns.

When the counter reaches TC (Terminal Count), it rolls over and keeps counting. To check if this occurred, use the GPCTR\_Watch function with **entityID** set to ND\_TC\_REACHED.

Typically, you will find modifying the following parameters through the GPCTR\_Change\_Parameter function useful when the counter **application** is ND\_SINGLE\_PULSE\_WIDTH\_MSR. You can change the following:

• ND\_SOURCE to ND\_INTERNAL\_100\_KHz. With this timebase, you can measure the time interval between 20  $\mu s$  and 160 s for E Series, 671X, and 445X (24 bits) devices and a time interval of 20  $\mu s$  and 11.37 hours for NI-TIO based devices (32 bits). The resolution will be lower than that you obtain using the ND\_INTERNAL\_20\_MHz timebase. For

NI-TIO based devices, you can use ND\_INTERNAL\_MAX\_TIMEBASE for higher resolution.

- ND\_SOURCE\_POLARITY to ND\_HIGH\_TO\_LOW.
- ND\_GATE to any legal value listed in the GPCTR\_Change\_Parameter function description.
- ND\_GATE\_POLARITY to ND\_NEGATIVE. The pulse width will be measured from a high-to-low to the next low-to-high transition of the gate signal.

You can use the GPCTR\_Change\_Parameter function after calling GPCTR\_Set\_Application and before calling GPCTR\_Control with action = ND\_PROGRAM or ND\_PREPARE.

To provide an external timebase, connect your timebase source to an appropriate PFI pin on the I/O connector and change ND\_SOURCE and ND\_SOURCE\_POLARITY to the appropriate values.

You can also configure the other general-purpose counter for ND\_PULSE\_TRAIN\_GNR and set ND\_SOURCE of this counter to ND\_OTHER\_GPCTR\_TC to measure pulse widths longer than 160 s for E Series, 671X, and 445X devices and 11.37 hours for NI-TIO devices.



**Caution** For DAQ-STC based devices, application ND\_SINGLE\_PULSE\_WIDTH measurements function correctly only if the gate is in the inactive state when the counter is armed by GPCTR\_Control. If the gate is in the active state when the counter is armed via GPCTR\_Control, you will see a **gateSignalError** returned. If this happens, you should not rely on values returned by GPCTR\_Watch.

### application = ND\_TRIG\_PULSE\_WIDTH\_MSR

In this application, the counter is used for a single measurement of the time interval between two transitions of the opposite polarity of the gate signal. By default, the measurement is performed between a low-to-high and a high-to-low transition on the I/O connector default gate pins (see Table 2-18 for default gate pin selection). The counter counts the 20 MHz internal timebase (INTERNAL\_20\_MHZ), so the resolution of measurement is 50 ns. The counter counts up starting from zero.

Unlike ND\_SINGLE\_PULSE\_WIDTH\_MSR, your gate signal can change state during counter arming. However, you need at least two pulses. Assuming positive gate polarity, the high-to-low transition on the first pulse acts as a trigger and allows the counter to begin the measurement on the next low-to-high transition.

The default 20 MHz timebase, combined with the counter width (24 bits), lets you measure the duration of a pulse between 100 ns and 0.8 s long. For the NI-TIO based devices with counter width 32 bits, you can measure pulse duration between 100 ns and 214 s long.

Figure 2-22 shows one possible scenario of a counter used for ND\_TRIG\_PULSE\_WIDTH\_MSR after the following programming sequence:

```
GPCTR_Control(deviceNumber, gpctrNum, ND_RESET)
GPCTR_Set_Application(deviceNumber, gpctrNum,
ND_TRIG_PULSE_WIDTH_MSR)
GPCTR_Control(deviceNumber, gpctrNum, ND_PROGRAM)
```

In Figure 2-22, the following behavior is present:

- Gate is the signal present at the counter gate input.
- Source is the signal present at the counter source input.
- Count is the value you would read from the counter if you called the GPCTR\_Watch function with **entityID** = ND\_COUNT. The different numbers illustrate behavior at different times.
- Armed is the value you read from the counter if you call the GPCTR\_Watch function with entityID = ND\_ARMED. The different values illustrate behavior at different times.

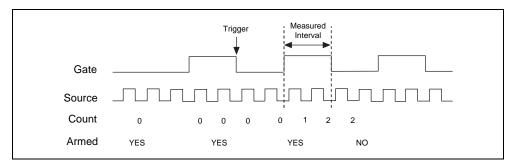



Figure 2-22. Single Triggered Pulse Width Generation Measurement

Use the GPCTR\_Watch function with **entityID** = ND\_ARMED to monitor the progress of the counting process. This measurement completes when **entityValue** becomes ND\_NO. After this is completed, you can retrieve the counted value by using GPCTR\_Watch with **entityID** = ND\_COUNT, as shown in the following example code:

```
Create u32 variable counter_armed.
Create u32 variable counter_value.
Repeat
{
GPCTR_Watch(deviceNumber, gpctrNumber, ND_ARMED, counter_armed)
}
```

```
until (counter_armed = ND_NO)
GPCTR_Watch(deviceNumber, gpctrNumber, ND_COUNT, counter_value)
```

To calculate the measured interval, multiply the counted value by the period corresponding to the timebase you are using. For example, if your ND\_SOURCE is ND\_INTERNAL\_20\_MHz, the interval will be 1/(20 MHz) = 50 ns. If the ND\_COUNT is 4 (Figure 2-20), the actual interval is 4 \* 50 ns = 200 ns.



**Note** The measured interval will correspond to the most recent pulse that arrived prior to the invoking of GPCTR\_Watch call with entityID set to ND\_COUNT\_AVAILABLE.



**Caution** There should be source transitions between gate transitions in order for this measurement to be correct. NI-TIO based devices can get around this limitation by setting the counter to count synchronously.

When the counter reaches terminal count ( $2^{24} - 1$  for E Series, 671X, and 445X devices, and  $2^{32} - 1$  for NI-TIO based devices), it rolls over and keeps counting. To check if this occurred, use GPCTR\_Watch function with **entityID** set to ND\_TC\_REACHED.

Typically, you will find modifying the following parameters through the GPCTR\_Change\_Parameter function useful when the counter **application** is ND\_TRIG\_PULSE\_WIDTH\_MSR. You can change the following:

- ND\_SOURCE to ND\_INTERNAL\_100\_KHZ. With this timebase, you can measure pulse widths between 20 µs and 160 s for E Series, 671X, and 445X devices and pulse widths between 20 µs and 11.37 hours for NI-TIO based devices. The timing resolution will be lower than if you are using the ND\_INTERNAL\_20\_MHZ timebase. For NI-TIO based devices, you can use ND\_INTERNAL\_MAX\_TIMBASE for more timing resolution.
- ND\_SOURCE\_POLARITY to ND\_HIGH\_TO\_LOW.
- ND\_GATE to any legal value listed in the GPCTR\_Change\_Parameter function description.
- ND\_GATE\_POLARITY to ND\_NEGATIVE. The pulse width will be measured from a high-to-low to the next low-to-high transition of the gate signal. The trigger will occur on a low-to-high transition on the gate signal.

You can use the GPCTR\_Change\_Parameter function after calling GPCTR\_Set\_Application and before calling GPCTR\_Control with **action** = ND\_PROGRAM or ND\_PREPARE.

To provide an external timebase, connect your timebase source to an appropriate PFI pin on the I/O connector and change ND\_SOURCE and ND\_SOURCE\_POLARITY to the appropriate values.

You can also configure the other general-purpose counter for ND\_PULSE\_TRAIN\_GNR and set ND\_SOURCE of this counter to ND\_OTHER\_GPCTR\_TC to generate pulses with delays and measure interval pulse widths longer than 160 s for E Series and 445X devices. You can generate pulse widths longer than 11.37 hours for NI-TIO based devices by using this application.

application = ND\_TWO\_SIGNAL\_EDGE\_SEPARATION\_MSR (For NI-TIO based devices only)

In this application, the counter is used for a single measurement of the time interval between transitions of the aux line and the gate signal. Measurement starts when the aux line signal is asserted and stops when the gate is asserted. By default, the measurement is performed between a low-to-high transition on the aux line signal and the next low-to-high transition on the gate signal. The default values for aux line and gate signals for the eight counters are shown in Tables 2-19 and 2-18 respectively. The counter uses the 20 MHz internal timebase (ND\_INTERNAL\_20\_MHZ) as its source, so the resolution of measurement is 50 ns. The counter counts up starting from 0.

Using the default 20 MHz timebase, combined with the counter width (32 bits), you can measure the duration of a pulse between 100 ns and 214 s long. You can also set the source to ND\_INTERNAL\_MAX\_TIMEBASE for higher temperature resolution or ND\_INTERNAL\_100\_KHZ for longer measuring times.

```
Figure 2-23 shows one possible use of a counter for ND_TWO_SIGNAL_EDGE_SEPARATION_MSR after the following programming sequence: GPCTR_Control (deviceNumber, gpctrNum, ND_RESET)

GPCTR_Set_Application (deviceNumber, gpctrNum, ND_TWO_SIGNAL_EDGE_SEPARATION_MSR)

GPCTR_Control (deviceNumber, gpctrNum, ND_PROGRAM)
```

In Figure 2-23, the following behavior is present:

- Aux line is the signal present at the counter aux line input.
- Gate is the signal present at the counter gate input.
- Source is the signal present at the counter source input.
- Count is the value you would read from the counter if you called the GPCTR\_Watch function **entityID** = ND\_COUNT. The different numbers illustrate the behavior at different times.
- Armed is the value you would read from the counter if you called the GPCTR\_Watch function with **entityID** = ND\_ARMED. The different values illustrate behavior at different times.

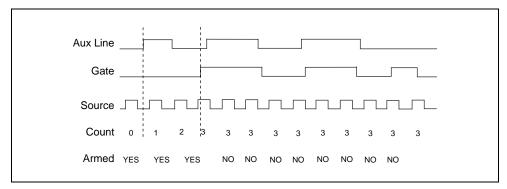



Figure 2-23. Two Signal Edge Separation Measurement

After the counter is armed, the first active edge on aux line begins the measurement. The measurement ends on the first active edge on gate that occurs after this time. Additional active edges on aux line are ignored, as indicated by Figure 2-23.

Use the GPCTR\_Watch function with  $entityID = ND_ARMED$  to monitor the progress of the counting process. This measurement completes when entityValue becomes ND\_NO. When the counter is no longer armed, you can retrieve the counted value by using GPCTR\_Watch with  $entityID = ND_COUNT$ , as shown in the following example code:

```
Create U32 variable counter_armed.
Create U32 variable counter_value.
repeat
{
GPCTR_Watch (deviceNumber, gpctrNumber, ND_ARMED, counter_armed)
until (counter_armed = ND_NO)
GPCTR_Watch (deviceNumber, gpctrNumber, ND_COUNT, counted_value)
```

To calculate the measured interval, multiply the counted value by the period corresponding to the timebase you are using. For example, if your ND\_SOURCE is ND\_INTERVAL\_20\_MHz, the interval will be (1/20 MHz) = 50 ns. If the ND\_COUNT is 3 (Figure 2-18), the actual interval is 3 \* 50 ns = 150 ns.

When the counter reaches terminal count  $(2^{32} - 1 \text{ for NI-TIO based devices})$ , it rolls over and keeps counting. To check if this occurred, use GPCTR\_Watch function with **entityID** set to ND TC REACHED.

Typically, modifying the following parameters through the GPCTR\_Change\_Parameter function is useful if the counter application is ND\_TWO\_SIGNAL\_EDGE\_SEPARATION\_MSR. You can change the following:

- ND\_SOURCE to ND\_INTERNAL\_100\_KHZ. With this timebase, you can measure intervals between 20 μs and 11.37 hours long. The resolution will be lower than that you will obtain by using ND\_INTERVAL\_20\_MHZ. For NI-TIO based devices, you can use ND\_INTERNAL\_MAX\_TIMEBASE for more timing resolution.
- ND\_SOURCE\_POLARITY to ND\_HIGH\_TO\_LOW.
- ND\_AUX\_LINE to any legal value listed in the GPCTR\_Change\_Parameter function description.
- ND\_AUX\_LINE\_POLARITY to ND\_NEGATIVE. Measurement will start on a falling edge.
- ND\_GATE to any legal value listed in the GPCTR\_Change\_Parameter function description.
- ND\_GATE\_POLARITY to ND\_NEGATIVE. Measurement will stop on a falling edge.

To provide an external timebase, connect your timebase source to an appropriate PFI pin on the I/O connector and change ND\_SOURCE and ND\_SOURCE\_POLARITY to the appropriate values.

You can also configure the other general-purpose counter for ND\_PULSE\_TRAIN\_GNR and set ND\_SOURCE of this counter to ND\_OTHER\_GPCTR\_TC to generate pulses with delays and measure interval pulse widths longer than 160 s for E Series and 445X devices. You can generate pulse widths longer than 11.37 hours for NI-TIO based devices by using this application.

### **application** = ND\_POSITION\_MSR (For NI-TIO based devices only)

In this application, the counter is used to track the position of a motion encoder. This application works with two types of encoders: quadrature encoders (X1, X2, and X4), and two-pulse encoders (also referred to as up/down encoders).

Encoders generally have three channels: channels A, B, and Z. Two-pulse encoders do not use the Z channel. The A channel is hardwired to the default counter source pin. The B channel is hardwired to the aux line pin. Finally, the Z channel is hardwired to the gate pin. The selected source for the counter determines the timebase of the counter during the position measurement.

The selected source of the counter is set at the maximum internal timebase for the best resolution.

Some quadrature encoders have a third channel: channel Z. Channel Z is also referred to as the index channel. A high level on channel Z causes the counter to be reloaded with a specified value in the phase when A and B are low. You must ensure that channel Z is high during at least a portion of the phase when channel A and B are low. Otherwise, the

GPCTR\_Change\_Parameter with **paramID** = ND\_Z\_INDEX\_ACTIVE and **paramValue** = ND\_YES. To set the reload value call GPCTR\_Change\_Parameter with **paramID** = ND\_Z\_INDEX\_VALUE and **paramValue** = desired reload value.

Figure 2-24 shows an example of X4 decoding. The reload of the counter occurs when all three channels are high. Also, the actual reload occurs within one max-timebase period after the reload phase becomes true. After the reload occurs, the counter continues to count from the specified reload value.

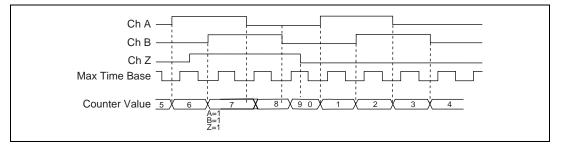



Figure 2-24. X4 Decoding Example with Z indexing

Typically, you will find modifying the following parameters through the GPCTR\_Change\_Parameter function useful when the counter application is ND\_POSITION\_MSR. You can change the following:

- ND\_Z\_INDEX\_ACTIVE to ND\_YES to active the Z channel.
- ND\_Z\_INDEX\_VALUE to the desired value for Z indexing.
- ND\_INITIAL\_COUNT to the desired initial value of the counter.



**Note** For 455X devices, this application cannot be used with counters 0 and 1.

#### application = ND\_SINGLE\_PULSE\_GNR

In this application, the counter is used for the generation of single delayed pulse. By default, you use the 20 MHz internal timebase (ND\_INTERNAL\_20\_MHZ), so the resolution of timing is 50 ns. The counter loads ND\_COUNT\_1 and counts down to zero for the delay time. It then loads ND\_COUNT\_2 and counts down to zero to generate the pulse. The default values for ND\_COUNT\_1 and ND\_COUNT\_2 are 5 million and 10 million, respectively, which give a 0.5 s pulse after a 0.25 s delay.

Using the default 20 MHz timebase, combined with the counter width of 24 bits (E Series and 445*X* only), you can generate pulses with a delay and length between 100 ns and 0.8 s long. For the NI-TIO based devices, the 32-bit wide counters allow you to measure a time interval between 100 ns and 214 s long using this timebase. If you wish to achieve greater resolution, you may use max-timebase (ND\_INTERNAL\_MAX\_TIMEBASE) instead.

For example, assume that you want to generate a pulse 200 ns long after 150 ns of delay. You need to set ND\_COUNT\_1 to 150 ns/50 ns = 3 and ND\_COUNT\_2 to 200 ns/50 ns = 4. Figure 2-25 shows the scenario of a counter used for ND\_SINGLE\_PULSE\_GNR after the following programming sequence:

```
GPCTR_Control(deviceNumber, gpctrNum, ND_RESET)

GPCTR_Set_Application(deviceNumber, gpctrNum, ND_SINGLE_PULSE_GNR)

GPCTR_Change_Parameter(deviceNumber, gpctrNum, ND_COUNT_1, 3)

GPCTR_Change_Parameter(deviceNumber, gpctrNum, ND_COUNT_2, 4)

Select_Signal(deviceNumber, gpctrNumOut, gpctrNumOut, ND_LOW_TO_HIGH)

GPCTR_Control(deviceNumber, gpctrNum, ND_PROGRAM)
```

In Figure 2-25, the following behavior is present:

- Source is the signal present at the counter source input.
- Output is the signal present at the counter output.
- Armed is the value you would read from the counter if you called the GPCTR\_Watch
  function with entityID = ND\_ARMED. The different values illustrate behavior at different
  times.

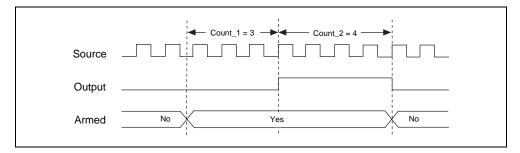



Figure 2-25. Single Pulse Generation

Use the GPCTR\_Watch function with **entityID** = ND\_ARMED to monitor the progress of the pulse generation process. The generation completes when **entityValue** becomes ND\_NO.

Typically, you find modifying of the following parameters through the GPCTR\_Change\_Parameter function useful when the counter **application** is ND\_SINGLE\_PULSE\_GNR. You can change the following:

- ND\_COUNT\_1 and ND\_COUNT\_2 to any value between 2 and  $2^{24} 1$  for E Series, 671X, and 445X devices, and to any value between  $2^{32} 1$  for NI-TIO based devices. The defaults are given for illustrative purposes only.
- ND\_SOURCE to ND\_INTERNAL\_100\_KHZ. With this timebase, you can generate pulses with a delay and length between 20 µs and 160 s for E Series, 671X, and 445X devices

and between 20 ns and 11.37 hours for NI-TIO based devices. The resolution will be lower than that you obtain using the ND\_INTERNAL\_20\_MHZ timebase. For NI-TIO based devices, you can use ND\_INTERNAL\_MAX\_TIMEBASE for higher resolution.

You can use the GPCTR\_Change\_Parameter function after calling GPCTR\_Set\_Application and before calling GPCTR\_Control with action = ND\_PROGRAM or ND\_PREPARE.

To provide an external timebase, you can connect your timebase source to an appropriate PFI pin on the I/O connector and change ND\_SOURCE and ND\_SOURCE\_POLARITY to the appropriate values.

You also can configure the other general-purpose counter for ND\_PULSE\_TRAIN\_GNR and set ND\_SOURCE of this counter to ND\_OTHER\_GPCTR\_TC to generate pulses with delays and intervals longer than 160 s for E Series, 671X, and 445X devices and 11.37 hours for NI-TIO based devices.

### application = ND\_SINGLE\_TRIG\_PULSE\_GNR

In this application, the counter is used for the generation of a single delayed pulse after a transition on the gate input. By default, the delayed pulse is generated by using the 20 MHz internal timebase (ND\_INTERNAL\_20\_MHz), so the resolution of timing is 50 ns. The counter loads ND\_COUNT\_1 and counts down to zero for the delay time. It then loads ND\_COUNT\_2 and counts down to zero to generate the pulse. The default values for ND\_COUNT\_1 and ND\_COUNT\_2 are 5 million and 10 million, respectively, which give a 0.5 s pulse after a 0.25 s delay. With default settings, a low-to-high transition on the gate signal triggers the pulse generation. The default gate signal is shown in Table 2-18. Only the first transition of the gate signal after you arm the counter triggers pulse generation; all subsequent transitions are ignored.

Using the default 20 MHz timebase, combined with the counter width (24 bits), you can measure a time interval between 100 ns and 0.8 s long for E Series, 671X, and 445X devices only. For the NI-TIO based devices, the 32-bit wide counters allow you to measure a time interval between 100 ns and 214 s long using this timebase. If you wish to achieve greater resolution, you may use max-timebase (ND\_INTERNAL\_MAX\_TIMEBASE) instead.

For example, assume that you want to generate a pulse 200 ns long after 150 ns of delay from the transition of the gate signal. You need to set ND\_COUNT\_1 to 150 ns/50 ns = 3 and ND\_COUNT\_2 to 200 ns/50 ns = 4. Figure 2-26 shows the scenario of a counter used for ND\_SINGLE\_TRIG\_PULSE\_GNR after the following programming sequence:

```
GPCTR_Control(deviceNumber, gpctrNum, ND_RESET)
GPCTR_Set_Application(deviceNumber, gpctrNum,
ND_SINGLE_TRIG_PULSE_GNR)
GPCTR_Change_Parameter(deviceNumber, gpctrNum, ND_COUNT_1, 3)
GPCTR_Change_Parameter(deviceNumber, gpctrNum, ND_COUNT_2, 4)
```

Select\_Signal(deviceNumber, gpctrNumOut, gpctrNumOut, ND\_LOW\_TO\_HIGH)
GPCTR\_Control(deviceNumber, gpctrNum, ND\_PROGRAM)

In Figure 2-26, the following behavior is present:

- Gate is the signal present at the counter gate input.
- Source is the signal present at the counter source input.
- Output is the signal present at the counter output.
- Armed is the value you would read from the counter if you called the GPCTR\_Watch function with **entityID** = ND\_ARMED. The different values illustrate behavior at different times.

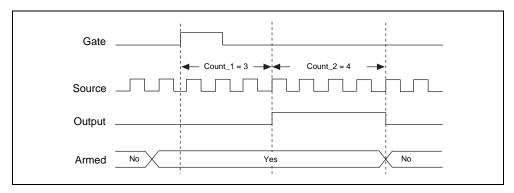



Figure 2-26. Single Triggered Pulse Generation

Use the GPCTR\_Watch function with **entityID** = ND\_ARMED to monitor the progress of the pulse generation process. The generation completes when **entityValue** becomes ND\_NO.

Typically, you will find modification of the following parameters through the GPCTR\_Change\_Parameter function useful when the counter **application** is ND\_SINGLE\_TRIG\_PULSE\_GNR. You can change the following:

- ND\_COUNT\_1 and ND\_COUNT\_2 to any value between 2 and  $2^{24} 1$  for E Series, 671X, and 445X devices, and to any value between  $2^{32} 1$  for NI-TIO based devices. The defaults are given for illustrative purposes only.
- ND\_SOURCE to ND\_INTERNAL\_100\_KHZ. With this timebase, you can generate pulses with a delay and length between 20 µs and 160 s. The resolution will be lower than that you obtain by using ND\_INTERVAL\_20\_MHZ. For NI-TIO based devices, you can use ND\_INTERNAL\_MAX\_TIMEBASE for more timing resolution.
- ND\_GATE to any legal value listed in the GPCTR\_Change\_Parameter function description.
- ND\_GATE\_POLARITY to ND\_NEGATIVE. A high-to-low transition of the gate signal triggers the pulse generation timing.

You can use the GPCTR\_Change\_Parameter function after calling GPCTR\_Set\_Application and before calling GPCTR\_Control with action = ND PROGRAM OF ND PREPARE.

To provide an external timebase, you can connect your timebase source to an appropriate PFI pin on the I/O connector and change ND\_SOURCE and ND\_SOURCE\_POLARITY to the appropriate values.

You also can configure the other general-purpose counter for ND\_SINGLE\_TRIG\_PULSE\_GNR and set ND\_SOURCE of this counter to ND\_OTHER\_GPCTR\_TC to generate pulses with delays and intervals longer than 160 s.

### application = ND\_RETRIG\_PULSE\_GNR

In this application, the counter is used for the generation of a retriggerable delayed pulse after each transition on the gate input. You get this by using the default 20 MHz internal timebase (ND\_INTERNAL\_20\_MHZ), so the timing resolution is 50 ns. The counter loads ND\_COUNT\_1 and counts down to zero for the delay time. It then loads ND\_COUNT\_2 and counts down to zero to generate the pulse. The default values for ND\_COUNT\_1 and ND\_COUNT\_2 are 5 million and 10 million, respectively, which give a 0.5 s pulse after a 0.25 s delay. With default settings, a low-to-high transition on the gate signal triggers the pulse generation. The default gate signal is shown in Table 2-18. Any gate transitions received during the pulse generation are ignored.

Using the default 20 MHz timebase, combined with the counter width (24 bits), you can measure a time interval between 100 ns and 0.8 s long. For the NI-TIO based devices, the 32-bit wide counters allow you to measure a time interval between 100 ns and 214 s long using this timebase. If you wish to achieve greater resolution, you may use max-timebase (ND\_INTERNAL\_MAX\_TIMEBASE) instead.

For example, assume that you want to generate a pulse 200 ns long after 150 ns of delay from every transition of the gate signal. You need to set ND\_COUNT\_1 to 150 ns/50 ns = 3 and ND\_COUNT\_2 to 200 ns/50 ns = 4. Figure 2-27 shows the scenario of a counter used for ND\_RETRIG\_PULSE\_GNR after the following programming sequence:

```
GPCTR_Control(deviceNumber, gpctrNum, ND_RESET)

GPCTR_Set_Application(deviceNumber, gpctrNum, ND_RETRIG_PULSE_GNR)

GPCTR_Change_Parameter(deviceNumber, gpctrNum, ND_COUNT_1, 3)

GPCTR_Change_Parameter(deviceNumber, gpctrNum, ND_COUNT_2, 4)

Select_Signal(deviceNumber, gpctrNumOut, gpctrNumOut, ND_LOW_TO_HIGH)

GPCTR_Control(deviceNumber, gpctrNum, ND_PROGRAM)
```

In Figure 2-27, the following behavior is present:

- Gate is the signal present at the counter gate input.
- Source is the signal present at the counter source input.
- Output is the signal present at the counter output.

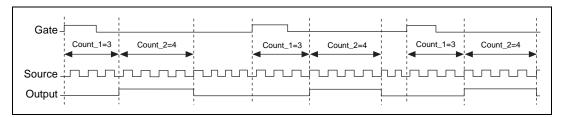



Figure 2-27. Retriggerable Pulse Generation

Use the GPCTR\_Control function with **action** = ND\_RESET to stop the pulse generation.

Typically, you will find modifying the following parameters through the GPCTR\_Change\_Parameter function useful when the counter **application** is ND\_RETRIG\_PULSE\_GNR. You can change the following:

- ND\_COUNT\_1 and ND\_COUNT\_2 to any value between 2 and  $2^{24} 1$  for E Series, 671X, and 445X devices, and to any value between  $2^{32} 1$  for NI-TIO based devices. The defaults are given for illustrative purposes only.
- ND\_SOURCE to ND\_INTERNAL\_100\_KHZ. With this timebase, you can generate pulses with delay and length between 20 µs and 160 s. The timing resolution will be lower than that you obtain using ND\_INTERNAL\_20\_MHZ timebase. For NI-TIO based devices, use ND\_INTERNAL\_MAX\_TIMEBASE for higher resolution.
- ND\_GATE to any legal value listed in the GPCTR\_Change\_Parameter function description.
- ND\_GATE\_POLARITY to ND\_NEGATIVE. A high-to-low transition of the gate signal initiates the pulse generation timing.

You can use the GPCTR\_Change\_Parameter function after calling GPCTR\_Set\_Application and before calling GPCTR\_Control with action = ND\_PROGRAM or ND\_PREPARE.

To provide an external timebase, you can connect your timebase source to an appropriate PFI pin on the I/O connector and change ND\_SOURCE and ND\_SOURCE\_POLARITY to the appropriate values.

You also can configure the other general-purpose counter for ND\_RETRIG\_PULSE\_GNR, and set ND\_SOURCE of this counter to ND\_OTHER\_GPCTR\_TC to generate pulses with delays and intervals longer than 160 s.

### application = ND\_PULSE\_TRAIN\_GNR

In this application, the counter is used for generation of a pulse train. By default, you get this by using the 20 MHz internal timebase (ND\_INTERNAL\_20\_MHz), so the resolution of timing is 50 ns. The counter loads ND\_COUNT\_1 and counts down to zero for the delay time. It then loads ND\_COUNT\_2 and counts down to zero to generate the pulse. The default values for ND\_COUNT\_1 and ND\_COUNT\_2 are 5 million and 10 million, respectively, which give a 0.5 s pulse after a 0.25 s delay. The frequency of your pulse train is: frequency = 1/timebase period\*(ND\_COUNT\_1 + ND\_COUNT\_2). The duty cycle of your pulse train is: duty cycle = ND\_COUNT\_2/(ND\_COUNT\_1 + ND\_COUNT\_2). Pulse train generation starts as soon as you arm the counter. You must reset the counter to stop the pulse train.

Using the default 20 MHz timebase, combined with the counter width (24 bits), you can generate trains consisting of pulses with delay and length between 100 ns and 0.8 s. For NI-TIO based devices, you can generate pulses with a delay and length between 100 ns and 214 s long.

Assume that you want to generate a pulse train with the low period 150 ns long and the high period 200 ns long. You need to set ND\_COUNT\_1 to 150 ns/50 ns = 3, and ND\_COUNT\_2 to 200 ns/50 ns = 4.

Figure 2-28 shows the scenario of a counter used for ND\_PULSE\_TRAIN\_GNR after the following programming sequence:

```
GPCTR_Control(deviceNumber, gpctrNum, ND_RESET)
GPCTR_Set_Application(deviceNumber, gpctrNum, ND_PULSE_TRAIN_GNR)
GPCTR_Change_Parameter(deviceNumber, gpctrNum, ND_COUNT_1, 3)
GPCTR_Change_Parameter(deviceNumber, gpctrNum, ND_COUNT_2, 4)
Select_Signal(deviceNumber, gpctrNumOut, gpctrNumOut, ND_LOW_TO_HIGH)
GPCTR_Control(deviceNumber, gpctrNum, ND_PROGRAM)
```

In Figure 2-28, the following behavior is present:

- Source is the signal present at the counter source input.
- Output is the signal present at the counter output.

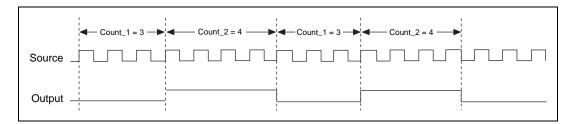



Figure 2-28. Pulse Train Generation

Use the GPCTR\_Control function with **action** = ND\_RESET to stop the pulse generation.

Typically, you will find modifying the following parameters through the GPCTR\_Change\_Parameter function useful when the counter **application** is ND\_PULSE\_TRAIN\_GNR. You can change the following:

- ND\_COUNT\_1 and ND\_COUNT\_2 to any value between 2 and  $2^{24} 1$  for E Series, 671X, and 445X devices, and to any value between 2 and  $2^{32} 1$  for NI-TIO based devices. The defaults are given for illustrative purposes only.
- ND\_SOURCE to ND\_INTERNAL\_100\_KHZ. With this timebase, you can generate pulses with delay and length between 20 µs and 160 s. The timing resolution will be lower than that you obtain using the ND\_INTERNAL\_20\_MHZ timebase. For NI-TIO based devices, use ND\_INTERNAL\_MAX\_TIMEBASE for higher resolution.
- ND\_INITIAL\_COUNT to any value between 2 and  $2^{32}-1$  to specify an initial delay after arming the counter but before the pulse train generation actually starts. This is only applicable for NI-TIO based devices.

You can use the GPCTR\_Change\_Parameter function after calling GPCTR\_Set\_Application and before calling GPCTR\_Control with action = ND\_PROGRAM or ND\_PREPARE.

To provide an external timebase, you can connect your timebase source to an appropriate PFI pin on the I/O connector and change ND\_SOURCE and ND\_SOURCE\_POLARITY to the appropriate values.

You also can configure the other general-purpose counter for ND\_PULSE\_TRAIN\_GNR, and set ND\_SOURCE of this counter to ND\_OTHER\_GPCTR\_TC to generate pulses with delays and intervals longer than 160 s.

### application = ND\_FSK

In this application, the counter is used for generation of frequency shift keyed signals. The counter generates a pulse train of one frequency and duty cycle when the gate is low, and a pulse train with a second set of parameters when the gate is high. By default, you get this by using the 20 MHz internal timebase (ND\_INTERNAL\_20\_MHz) so the timing resolution is 50 ns. While the gate is low, the counter loads ND\_COUNT\_1 and count down to zero for the inactive pulse train. It then loads ND\_COUNT\_2 and counts down for the active phase of the pulse train. The counter repeats in this manner. The FSK pulse generation starts as soon as you arm the counter. You must reset the counter to stop the pulse generation.

While the gate is high, he counter loads ND\_COUNT\_3 and count down to zero for the inactive pulse train. It then loads ND\_COUNT\_4 and counts down for the active phase of the pulse train. When the gate changes state, the cycle in progress finishes before the second set of parameters are used.

Using the default 20 MHz timebase, combined with the counter width (24 bits), you can generate trains consisting of pulses with delay and length between 100 ns and 0.8 s. For NI-TIO based devices, you can generate pulses with a delay and length between 100 ns and 214 s long.

Assume that you want to generate a pulse train with 100 ns low time and 150 ns high time when the gate is low and with 300 ns low time and 200 ns high time when the gate is high. You need to set ND\_COUNT\_1 to 100 ns/50 ns = 2, ND\_COUNT\_2 to 150 ns/50 ns = 3, ND\_COUNT\_3 to 300 ns/50 ns = 6, and ND\_COUNT\_4 to 200 ns/50 ns = 4. Figure 2-29 shows a counter used for ND\_FSK after the following programming sequence:

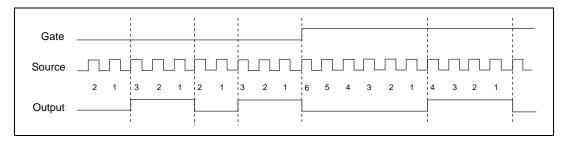
```
GPCTR_Control(deviceNumber, gpctrNum, ND_RESET)

GPCTR_Set_Application(deviceNumber, gpctrNum, ND_FSK)

GPCTR_Change_Parameter(deviceNumber, gpctrNum, ND_COUNT_1, 2)

GPCTR_Change_Parameter(deviceNumber, gpctrNum, ND_COUNT_2, 3)

GPCTR_Change_Parameter(deviceNumber, gpctrNum, ND_COUNT_3, 6)


GPCTR_Change_Parameter(deviceNumber, gpctrNum, ND_COUNT_4, 4)

Select_Signal(deviceNumber, gpctrNumOut, gpctrNumOut, ND_LOW_TO_HIGH)

GPCTR_Control(deviceNumber, gpctrNum, ND_PROGRAM)
```

In Figure 2-29, the following behavior is present:

- Gate is the signal present at the counter gate input.
- Source is the signal present at the counter source input.
- Output is the signal present at the counter output.



**Figure 2-29.** Frequency Shift Keying

Use the GPCTR\_Control function with **action** = ND\_RESET to stop the pulse generation.

Typically, you will find modifying the following parameters through the GPCTR\_Change\_Parameter function useful when the counter **application** is ND\_FSK.

You can change the following:

- ND\_COUNT\_1 to ND\_COUNT\_4 to any value between 2 and  $2^{24} 1$  for E Series, 671X, and 445X devices, and to any value between  $2^{32} 1$  for NI-TIO based devices. The defaults are given for illustrative purposes only.
- ND\_SOURCE to ND\_INTERNAL\_100\_KHZ. With this timebase, you can generate pulses with delay and length between 20 µs and 160 s. The timing resolution will be lower than that you obtain using ND\_INTERNAL\_20\_MHZ timebase. For NI-TIO based devices, use ND\_INTERNAL\_MAX\_TIMEBASE for higher resolution.
- ND\_GATE to any legal value listed in the GPCTR\_Change\_Parameter function description.
- ND\_INITIAL\_COUNT to any value between 2 and  $2^{32}-1$  to specify an initial delay after arming the counter but before the pulse train generation actually starts. This is only applicable for NI-TIO based devices.

You can use the GPCTR\_Change\_Parameter function after calling GPCTR\_Set\_Application and before calling GPCTR\_Control with **action** = ND\_PROGRAM or ND\_PREPARE.

To provide an external timebase, connect your timebase source to an appropriate PFI pin on the I/O connector and change ND\_SOURCE and ND\_SOURCE\_POLARITY to the appropriate values.

You also can configure the other general-purpose counter for ND\_PULSE\_TRAIN\_GNR, and set ND\_SOURCE of this counter to ND\_OTHER\_GPCTR\_TC to generate pulses with delays and intervals longer than 160 s.

#### application = ND\_BUFFERED\_EVENT\_CNT

In this application, the counter is used for repeated counting of events. By default, the counted events are low-to-high transitions on the line given in Table 2-14. Counts present at specified events of the signal present at the gate are saved in a buffer. Under default settings, low-to-high transitions on the line identified as the default gate for the counter (see Table 2-25) cause the counter value to be saved. The counter counts up starting from zero; its contents are placed in the buffer after an edge of appropriate polarity is detected on the gate; the counter keeps counting without interruption. For single buffered acquisitions, NI-DAQ transfers data from the counter into the buffer until the buffer is filled; the counter is disarmed at that time.

The counter width (24 bits) lets you count up to  $2^{24}-1$  events for E Series, 671X and 445X devices, or up to  $2^{32}-1$  for the NI-TIO based devices. Figure 2-30 shows one possible scenario of a counter used for ND\_BUFFERED\_EVENT\_CNT after the following programming sequence:

```
Let buffer be a 100-element array of u32.

GPCTR_Control(deviceNumber, gpctrNum, ND_RESET)
```

```
GPCTR_Set_Application(deviceNumber, gpctrNum, ND_BUFFERED_EVENT_CNT)
GPCTR_Config_Buffer(deviceNumber, gpctrNum, 0, 100, buffer)
GPCTR_Control(deviceNumber, gpctrNum, ND_PROGRAM)
```

In Figure 2-30, the following behavior is present:

- Gate is the signal present at the counter gate input.
- Source is the signal present at the counter source input.
- Buffer is the contents of the buffer; you can retrieve data from the buffer when the counter becomes disarmed.

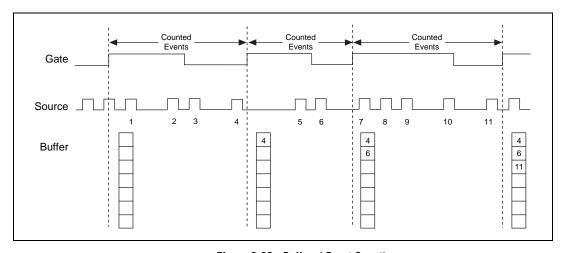



Figure 2-30. Buffered Event Counting

In case of a single-buffered measurement, use the GPCTR\_Watch function with **entityID** = ND\_ARMED to monitor the progress of the counting process. This measurement completes when **entityValue** becomes ND\_NO. You can do this as follows:

```
Create u32 variable counter_armed.
repeat
{
GPCTR_Watch(deviceNumber, gpctrNumber, ND_ARMED, counter_armed)
}
until (counter_armed = ND_NO)
```

When the counter is disarmed, you can safely access data in the buffer.

Typically, you will find modifying the following parameters through the GPCTR\_Change\_Parameter function useful when the counter **application** is ND\_BUFFERED\_EVENT\_CNT. You can change the following:

- ND\_SOURCE to any legal value listed in the GPCTR\_Change\_Parameter function description.
- ND\_SOURCE\_POLARITY to ND\_HIGH\_TO\_LOW.
- ND\_GATE to any legal value listed in the GPCTR\_Change\_Parameter function description.
- ND\_GATE\_POLARITY to ND\_NEGATIVE. Counts will be captured on every high-to-low transition of the signal present at the gate.
- ND\_BUFFER\_MODE to ND\_CONTINUOUS. Data is transferred to the buffer in a circular manner until the counter is reset.



**Note** The counter will start counting as soon as you arm it. However, it will not count if the gate signal stays in low state when ND\_GATE\_POLARITY is ND\_POSITIVE or if it stays in high state when ND\_GATE\_POLARITY is ND\_NEGATIVE while GPCTR\_Control is executed with action = ND\_ARM or action = ND\_PROGRAM. Be aware of this when you interpret the first count in your buffer.

### application = ND\_BUFFERED\_PERIOD\_MSR

In this application, the counter is used for repeated measurement of the time interval between successive transitions of the same polarity of the gate signal. By default, those are the low-to-high transitions of the signal listed in Table 2-18. The counter uses the 20 MHz internal timebase (ND\_INTERNAL\_20\_MHz) as its source, so the resolution of measurement is 50 ns. The counter counts up starting from zero upon receiving an active edge on its gate; its contents are placed in the buffer after another active edge is detected on the gate; the counter then starts counting up from zero again. For single-buffered acquisitions, NI-DAQ transfers data from the counter into the buffer until the buffer is filled; the counter is disarmed at that time.

The default 20 MHz timebase, combined with the counter width for E Series, 671*X* and 445*X* devices (24 bits), lets you measure the width of a pulse between 100 ns and 0.8 s long. The 32-bit counters on NI-TIO based devices allow you to measure periods from 100 ns to 800 ms using the 20 MHz timebase.

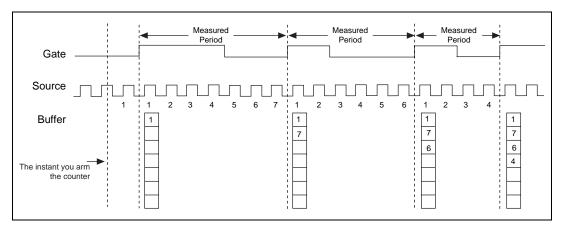



Figure 2-31. Buffered Period Measurement

Typically, you will find modifying the following parameters through the GPCTR\_Change\_Parameter function useful when the counter application is ND\_BUFFERED\_PERIOD\_MSR. You can change the following:

- ND\_SOURCE to ND\_INTERNAL\_100\_KHZ—With this timebase, you can generate pulses with delay and length between 20 µs and 160 s. The timing resolution will be lower than that you obtain using ND\_INTERNAL\_20\_MHZ timebase. For NI-TIO based devices, use ND\_INTERNAL\_MAX\_TIMEBASE for higher resolution.
- ND\_SOURCE\_POLARITY to ND\_HIGH\_TO\_LOW.
- ND\_GATE to any legal value listed in the GPCTR\_Change\_Parameter function description.
- ND\_GATE\_POLARITY to ND\_NEGATIVE—Measurements will be performed between successive high-to-low transitions of the signal present at the gate.
- ND BUFFER MODE to ND CONTINUOUS-Data is transferred to the buffer in a circular manner until the counter is reset.

To provide an external timebase, you can connect your timebase source to an appropriate PFI pin on the I/O connector and change ND\_SOURCE and ND\_SOURCE\_POLARITY to the appropriate values.

You also can configure the other general-purpose counter for ND\_PULSE\_TRAIN\_GNR, and set ND\_SOURCE of this counter to ND\_OTHER\_GPCTR\_TC to measure intervals longer than 160 s.



**Note** The counter will start counting as soon as you arm it. Be aware of this when you interpret the first count in your buffer.



**Caution** If gate edges arrive and no source edges are present between those gate edges, then the previously saved value is saved again as shown in Figure 2-32. Please make sure that this condition does not occur during your measurement. For NI-TIO based devices, you can set the counter to count in a synchronous mode. You can do this by calling GPCTR\_Change\_Parameter with paramID = ND\_COUNTING\_SYNCHRONOUS and paramValue = ND\_YES. Synchronous mode makes sure the counter latches the correct value even when no source edges are present.

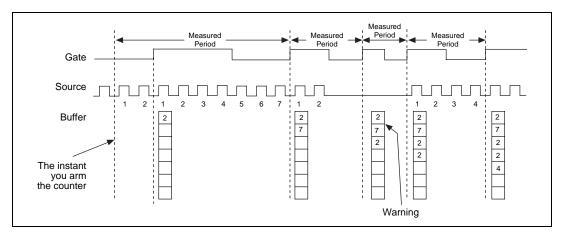



Figure 2-32. Buffered Period Measurement when No Source Edges Are Present between Gate Edges

#### application = ND\_BUFFERED\_SEMI\_PERIOD\_MSR

In this application, the counter is used for the continuous measurement of the time interval between successive transitions of the gate signal. By default, those are all transitions of the signal on the line given in Table 2-18. The counter uses the 20 MHz internal timebase (ND\_INTERNAL\_20\_MHZ) as its source, so the resolution of measurement is 50 ns. The counter counts up starting from zero; its contents are placed in the buffer after an edge is detected on the gate; the counter then starts counting up from zero again. For single-buffered measurements, NI-DAQ transfers data from the counter into the buffer until the buffer is filled; the counter is disarmed at that time.



**Note** For STC based devices, the counter starts counting as soon as you arm it. Be aware of this when you interpret the first count in your buffer. For NI-TIO based devices, the counter begins to count upon receiving the first active edge after the counter is armed by a GPCTR CONTROL call.

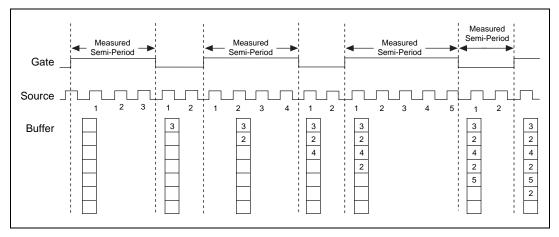



Figure 2-33. Buffered Semi-Period Measurement



**Caution** If gate edges arrive and no source edges are present between those gate edges, then the previously saved value is saved again, as shown by Figure 2-34. Please make sure that this condition does not occur during your measurement. For NI-TIO based devices, you can set the counter to count in a synchronous mode. You can do this by calling GPCTR\_Change\_Parameter with paramID = ND\_COUNTING\_SYNCHRONOUS and paramValue = ND\_YES. Synchronous mode makes sure the counter latches the correct value even when no source edges are present.

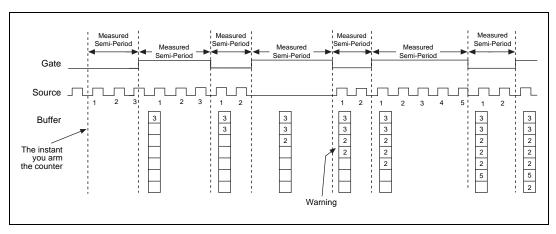
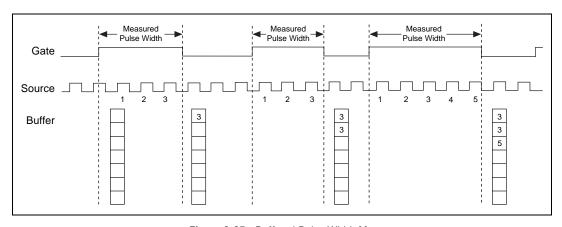


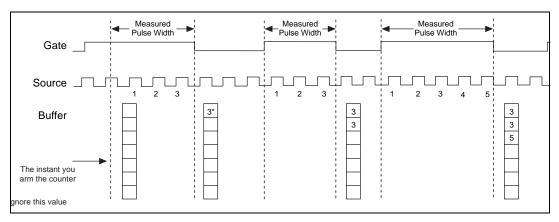

Figure 2-34. Buffered Semi-Period Measurement when No Source Edges Are Present between Gate Edges

### application = ND\_BUFFERED\_PULSE\_WIDTH\_MSR

In this application, the counter is used for continuous measurement of pulse widths of selected polarity present at the counter gate. By default, those pulses are active high pulses present on the signal shown in Table 2-18. The counter counts up starting from zero; its contents are placed in the buffer after a pulse completes; the counter then starts counting up from zero again when the next pulse appears. For single-buffered measurements, NI-DAQ transfers data from the counter into the buffer until the buffer is filled; the counter is disarmed at that time.

Using the default 20 MHz timebase, combined with the counter width (24 bits), you can generate trains consisting of pulses with delay and length between 100 ns and 0.8 s. For NI-TIO based devices, you can measure pulses with a delay and length between 100 ns and 214 s long.





Figure 2-35. Buffered Pulse Width Measurement



**Note** You must make sure that there is at least one source transition during the measured pulse and between consecutive measured pulses in order for this application to work properly. For NI-TIO based devices, you can set the counter to count in a synchronous mode. Synchronous mode makes sure the counter latches the correct value.



**Caution** For STC based devices, if the gate signal is high (when ND\_GATE\_POLARITY is ND\_POSITIVE) while arming the counter, counting starts immediately, and the first count is saved on the first high-to-low transition. The same applies to low gate signal during arming of the counter when ND\_GATE\_POLARITY is set to ND\_POSITIVE; in this case, the first count gets saved on the first low-to-high transition.



**Figure 2-36.** Buffered Pulse Width when Gate Is High during Arming

application = ND\_BUFFERED\_TWO\_SIGNAL\_EDGE\_SEPARATION\_MSR



**Note** This application is supported by NI-TIO based devices only.

In this application, the counter is used for continuous measurement of the time interval between transitions of the aux line and the gate signal. Measurement starts when the aux line signal is asserted and stops when the gate signal is asserted. By default, the measurement is performed between low-to-high transitions of the aux line and the gate signals. The default values for aux line and gate signals for the eight counters are shown in Tables 2-19 and 2-18. The counter counts the 20 MHz internal timebase (ND\_INTERNAL\_20\_MHZ), so the resolution of measurement is 50 ns. The counter counts up starting from zero when it detects an edge on the gate; its contents are placed in the buffer after it encounters an edge on the aux line; the counter then starts counting up from zero again when another edge occurs on the gate. For single buffer mode set using GPCTR\_Change\_Parameter using paramID = ND\_BUFFER\_MODE and paramValue = ND\_SINGLE. NI-DAQ transfers data from the counter into the buffer in continuous buffer mode (set using GPCTR\_Change\_Parameter using paramID = ND\_BUFFER\_MODE and paramValue = ND\_CONTINUOUS).

The default 20 MHz timebases, combined with the counter width (32 bits), lets you measure a separation between 100 ns and 214 s long.

Figure 2-37 shows one possible use of a counter for ND\_BUFFERED\_TWO\_SIGNAL\_EDGE\_SEPARATION\_MSR after the following programming sequence:

GPCTR\_Control (deviceNumber, gpctrNum, ND\_RESET)

```
GPCTR_Set_Application (deviceNumber, gpctrNum,
ND_BUFFERED_TWO_SIGNAL_EDGE_SEPARATION_MSR)
GPCTR_Config_Buffer (deviceNumber, gpctrNum, 0, 100, buffer)
GPCTR_Control (deviceNumber, gpctrNum, ND_PROGRAM)
```

In Figure 2-37, the following behavior is present:

Create U32 variable counter\_armed.

- Aux line is the signal present at the counter aux line input.
- Gate is the signal present at the counter gate input.
- Source is the signal present at the counter source input.
- Count is the value you would read from the counter if you called the GPCTR\_Watch function **entityID** = ND\_COUNT. The different numbers illustrate the behavior at different times.

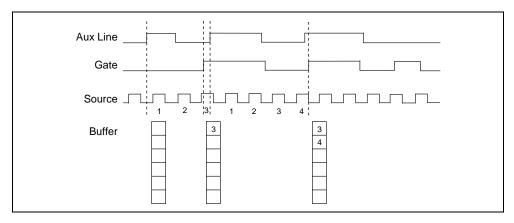



Figure 2-37. Buffered Two-Signal Edge Separation Measurement

Use the GPCTR\_Watch function with **entityID** = ND\_ARMED to monitor the progress of the counting process.

This measurement completes when entityValue becomes ND\_NO. You can do this as follows:

```
Create U32 variable counter_value.
repeat
{
GPCTR_Watch (deviceNumber, gpctrNumber, ND_ARMED, counter_armed)
}
until (counter_armed = ND_NO)
```

When the counter is disarmed you can safely access data in the buffer. Another approach to accessing the data in the buffer while the counter is running is to use the GPCTR\_Read\_Buffer.

Typically, modifying the following parameters through the GPCTR\_Change\_Parameter function is useful when the counter **application** is

ND\_BUFFERED\_TWO\_SIGNAL\_EDGE\_SEPARATION\_MSR. You can change the following:

- ND\_SOURCE to ND\_INTERNAL\_100\_KHZ. With this timebase, you can measure intervals between 20 µs and 11.37 hours long. The timing resolution will be lower than that you obtain using ND\_INTERNAL\_20\_MHZ timebase. For NI-TIO based devices, use ND\_INTERNAL\_MAX\_TIMEBASE for higher resolution.
- ND\_AUX\_LINE to any legal value listed in the GPCTR\_Change\_Parameter function description.
- ND\_AUX\_LINE\_POLARITY to ND\_NEGATIVE. Measurement will start on a falling edge.
- ND\_GATE to any legal value listed in the GPCTR\_Change\_Parameter function description.
- ND\_GATE\_POLARITY to ND\_NEGATIVE. Measurement stops on a falling edge.
- ND\_BUFFER\_MODE to ND\_CONTINUOUS for circular buffer operations.

### **application** = ND\_BUFFERED\_POSITION\_MSR (NI-TIO based devices only)

In this application, the counter is used to record the position of a motion encoder. The position of the motion encoder is latched or saved into a buffer upon a signal from the selected gate. This application works with two types of encoders: quadrature encoders (X1, X2, and X4), and two-pulse encoders (also referred to as up/down encoders).

Encoders generally have three channels: channels A, B, and Z. Two-pulse encoders do not use the Z channel. The A channel is hardwired to the default counter source pin. The B channel is hardwired to the aux line pin. Finally, the Z channel is hardwired to the gate pin.

The selected source for the counter determines the timebase of the counter during the position measurement. The selected source of the counter is set at the maximum internal timebase for the best resolution. The selected gate is used to trigger the counter into latching or saving the position of the encoder. The position of the encoder is saved into the specified buffer. By default, the selected gate is set to the default gate pin. However, you can set the selected gate to some other pin, too.

Some quadrature encoders have a third channel: channel Z. Channel Z is also referred to as the index channel. A high level on channel Z causes the counter to be reloaded with a specified value in the phase when A and B are high. You must ensure that channel Z is high during at least a portion of the phase when channel A and B are high. Otherwise, the GPCTR\_Change\_Parameter with **paramID** = ND\_Z\_INDEX\_ACTIVE and **paramValue** = ND\_YES. To set the reload value call GPCTR\_Change\_Parameter with **paramID** = ND\_Z\_INDEX\_VALUE and **paramValue** = desired reload value.

Figure 2-38 shows an example of X4 decoding. The reload of the counter occurs when all three channels are high. Also, the actual reload occurs within one max-timebase period after the reload phase becomes true. After the reload occurs, the counter continues to count from the specified reload value.

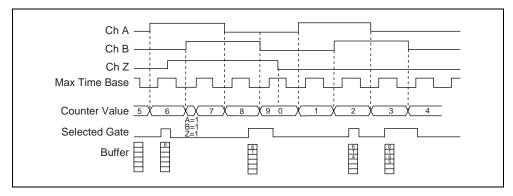



Figure 2-38. Buffered Position Measurement

Typically, you will find modifying the following parameters through the GPCTR\_Change\_Parameter function useful when the counter application is ND\_POSITION\_MSR. You can change the following:

- ND\_Z\_INDEX\_ACTIVE to ND\_YES to active the Z channel.
- ND\_Z\_INDEX\_VALUE to the desired value for Z indexing.
- ND INITIAL COUNT to the desired initial value of the counter.
- ND\_GATE to select which signal will trigger counter latches.
- ND\_GATE\_POLARITY TO ND\_NEGATIVE. This will only affect the selected gate—not the hardwired Z index signal.



**Note** For 455X devices, this application cannot be used with counters 0 and 1.

# **GPCTR Watch**

### **Format**

status = GPCTR\_Watch (deviceNumber, gpctrNum, entityID, entityValue)

# **Purpose**

Monitors state of the general-purpose counter and its operation.

## **Parameters**

## Input

| Name         | Туре | Description                              |
|--------------|------|------------------------------------------|
| deviceNumber | i16  | assigned by configuration utility        |
| gpctrNum     | u32  | number of the counter to use             |
| entityID     | u32  | identification of the feature to monitor |

# Output

| Name        | Type | Description                                           |
|-------------|------|-------------------------------------------------------|
| entityValue | *u32 | the value of the feature specified by <b>entityID</b> |

### Parameter Discussion

Legal ranges for the **gpctrNum**, **entityID**, and **entityValue** are in terms of constants defined in a header file. The header file you should use depends on which of the following languages you are using:

- C programmers—NIDAQCNS.H (DATAACQ.H for LabWindows/CVI)
- BASIC programmers—NIDAQCNS.INC. (Visual Basic for Windows programmers should refer to the *Programming Language Considerations* section in Chapter 1, *Using the NI-DAQ Functions*, for more information.)
- Pascal programmers—NIDAQCNS.PAS

**gpctrNum** indicates which counter to program. The legal values for this parameter shown in Table 2-13.

**entityID** indicates which feature you are interested in. Legal values are listed in the following paragraphs, along with the corresponding values you can expect for **entityValue**. **entityValue** will be given either in terms of constants from the header file, or as numbers, as appropriate.

### entityID = ND\_COUNT

This is the counter contents. **entityValue** can be between 0 and  $2^{24} - 1$  for E Series, 671X, and 445X and between 0 and  $2^{32} - 1$  for NI-TIO based devices. Reading the count while the counter is in progress does *not* affect the operation of the counter.

### entityID = ND\_AVAILABLE\_POINTS

If the application is buffered event counting or time measurement, this **entityID** allows you to see how many points have been transferred to the buffer.

### entityID = ND\_ARMED

Indicates whether the counter is armed. **entityValue** can be ND\_YES or ND\_NO. You can use this in any counter operation for finding out when the operation completes.

### entityID = ND\_TC\_REACHED

Indicates whether the counter has reached terminal count **entityValue** can be ND\_YES or ND\_NO. You can use this in time measurement applications for detecting overflow (pulse was too long to be measured using the selected timebase).

### entityID = ND\_OUTPUT\_STATE

You can use this to read the value of the counter output; the range is ND\_LOW and ND\_HIGH.

### entityID = ND\_READ\_MARK

Indicates the read mark in the buffer when a continuous-buffer operation is in progress. **entityValue** can be between 0 and  $2^{32} - 1$ .

### entityID = ND\_WRITE\_MARK

Indicates the location in the buffer (specified in GPCTR\_Config\_Buffer) in which the latest input data has been written. **entityValue** can be between 0 and  $2^{32} - 1$ .

### entityID = ND INTERNAL MAX TIMEBASE

Indicates the maximum frequency of the timebase available for a counter. The **entityValue** is in Hertz. If **gpctrNum** =  $ND_RTC_X$  and the maximum timebase is greater than 50 MHz, this timebase cannot be selected as a source.

### entityID = ND MAX PRESCALE

Indicates the maximum value of the prescale factor that can be applied to the source selection of a NI-TIO-based device.

#### entityID = ND READ MARK H SNAPSHOT and ND READ MARK L SNAPSHOT

These attributes are set when <code>GPCTR\_Control</code> is called with <code>ND\_SNAPSHOT</code>. They return a 64-bit read offset for the current acquisition. <code>ND\_READ\_MARK\_H\_SNAPSHOT</code> is the upper four bytes, and <code>ND\_READ\_MARK\_L\_SNAPSHOT</code> is the lower four bytes.

#### entityID = ND WRITE MARK H SNAPSHOT and ND WRITE MARK L SNAPSHOT

These attributes are set when GPCTR\_Control is called with ND\_SNAPSHOT. They return a 64-bit write offset for the current acquisition. ND\_WRITE\_MARK\_H\_SNAPSHOT is the upper four bytes, and ND\_WRITE\_MARK\_L\_SNAPSHOT is the lower four bytes.

entityID = ND\_BACKLOG\_H\_SNAPSHOT and ND\_BACKLOG\_L\_SNAPSHOT

These attributes are set when <code>GPCTR\_Control</code> is called with <code>ND\_SNAPSHOT</code>. They return a 64-bit backlog total for the current acquisition. <code>ND\_BACKLOG\_H\_SNAPSHOT</code> is the upper four bytes, and <code>ND\_BACKLOG\_L\_SNAPSHOT</code> is the lower four bytes.

entityID = ND\_ARMED\_SNAPSHOT

This attribute returns the armed status of the counter acquisition during the last GPCTR\_Control call with ND\_SNAPSHOT. **entityValue** can be ND\_YES or ND\_NO.

entityID = ND\_SAVED\_COUNT (NI-TIO based devices only)

This attribute returns the value of the latched hardware save register. This is handy for reading the last value latched by a gate signal.

entityID = ND\_BUFFER\_SIZE

This attribute returns the number of elements in the previously set buffer.

entityID = ND\_ELEMENT\_SIZE

This attribute returns the size of a buffer element in bytes.



**Note** C Programmers—**entityValue** is a pass-by-address parameter.

This function can report multiple errors. There are three types of errors that this function can report. Here are the rules of precedence:

- Miscellaneous Errors—These types of errors such as invalid errors will typically prevent the function from operating. These types of errors are reported over all other types of errors.
- **overWriteError**—This error can be reported during buffered operations. It indicates that the user did not read data from the buffer quickly enough and data was overwritten. If miscellaneous error occurs repeatedly during a read function, this can cause an **overWriteError**. The miscellaneous errors will be reported over the **overWriteError**. However, the **overWriteError** will be reported the next time a miscellaneous error does not occur during a GPCTR\_Watch or GPCTR\_Read call. Finally, the **overWriteError** is only issued once per overwrite. If one or more over write errors occur, then one over write error will be issued during the next GPCTR\_Watch or GPCTR\_Read call.
- dataLossError—This error can be reported during buffered operations. It indicates that
  the internal counter FIFO overflowed. Once this errors occurs, it is repeatedly reported
  until the end of the acquisition. All subsequent GPCTR\_Watch and GPCTR\_Read calls
  will return this error. Any other error will be reported over a dataLossError.

# **ICTR** Read

## **Format**

status = ICTR\_Read (deviceNumber, ctr, count)

# **Purpose**

Reads the current contents of the selected counter without disturbing the counting process and returns the count.

## **Parameters**

# Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |
| ctr          | i16  | counter number                    |

# Output

| Name  | Туре | Description   |
|-------|------|---------------|
| count | *u16 | current count |

## **Parameter Discussion**

**ctr** is the counter number.

Range: 0 through 2.

**count** returns the current count of the specified counter while the counter is counting down. **count** can be between 0 and 65,535 when **ctr** is configured in binary mode (the default). **count** can be between 0 and 9,999 if the last call to ICTR\_Setup configured **ctr** in BCD counting mode.



**Note** C Programmers—**count** is a pass-by-address parameter.



**Note** BASIC Programmers—NI-DAQ returns count as a 16-bit unsigned number. In BASIC, integer variables are represented by a 16-bit two's complement system. Thus, values greater than 32,767 are incorrectly treated as negative numbers when displaying. You can avoid this problem by using a long number as shown:

```
if count% < zero then
    lcount& = count% + 65,536
else
    lcount& = count%
end if</pre>
```

# **ICTR** Reset

### **Format**

status = ICTR\_Reset (deviceNumber, ctr, state)

## **Purpose**

Sets the output of the selected counter to the specified state.

## **Parameters**

## Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |
| ctr          | i16  | counter number                    |
| state        | i16  | logic state to be reset           |

### Parameter Discussion

**ctr** is the counter number.

Range: 0 through 2.

**state** is the logic state to which the counter is to be reset.

Range: 0 or 1.

If **state** is 0, the counter output is forced low by programming the specified counter in mode 0. NI-DAQ does *not* load the count register; thus, the output remains low until NI-DAQ programs the counter in another mode. If **state** is 1, NI-DAQ forces the counter output high by programming the given counter in mode 2. NI-DAQ does not load the count register; thus, the output remains high until NI-DAQ programs the counter in another mode.

# ICTR\_Setup

## **Format**

status = ICTR\_Setup (deviceNumber, ctr, mode, count, binBcd)

# **Purpose**

Configures the given counter to operate in the specified mode.

## **Parameters**

## Input

| Name         | Туре | Description                                    |
|--------------|------|------------------------------------------------|
| deviceNumber | i16  | assigned by configuration utility              |
| ctr          | i16  | counter number                                 |
| mode         | i16  | mode in which the counter is to operate        |
| count        | u16  | period from one output pulse to the next       |
| binBcd       | i16  | 16-bit binary or 4-decade binary-coded decimal |

## **Parameter Discussion**

**ctr** is the counter number. Range: 0 through 2.

**mode** is the mode in which the counter is to operate.

- 0: Toggle output from low to high on terminal count.
- 1: Programmable one-shot.
- 2: Rate generator.
- 3: Square wave rate generator.
- 4: Software-triggered strobe.
- 5: Hardware-triggered strobe.

In mode 0, the output goes low after the mode set operation, and the counter begins to count down while the gate input is high. The output goes high when NI-DAQ reaches the terminal count (that is, the counter has decremented to zero) and stays high until you set the selected counter to a different mode. Figure 2-39 shows the mode 0 timing diagram.

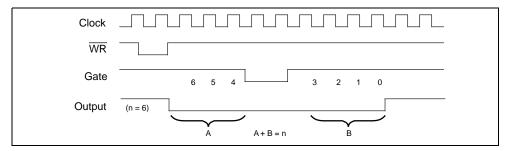



Figure 2-39. Mode 0 Timing Diagram

In mode 1, the output goes low on the count following the rising edge of the gate input and goes high on terminal count. Figure 2-40 shows the mode 1 timing diagram.

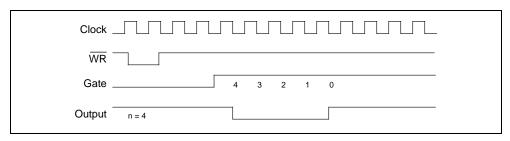



Figure 2-40. Mode 1 Timing Diagram

In mode 2, the output goes low for one period of the clock input. **count** indicates the period from one output pulse to the next. Figure 2-41 shows the mode 2 timing diagram.

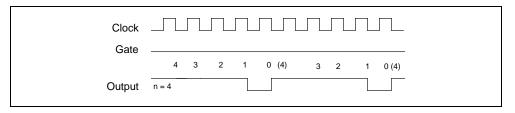



Figure 2-41. Mode 2 Timing Diagram

In mode 3, the output stays high for one half of the **count** clock pulses and stays low for the other half. Figure 2-42 shows the mode 3 timing diagram.

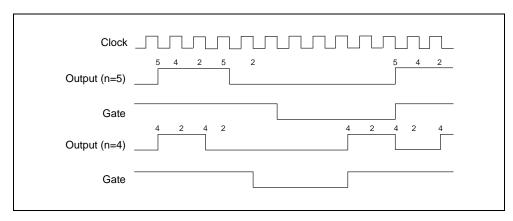



Figure 2-42. Mode 3 Timing Diagram

In mode 4, the output is initially high, and the counter begins to count down while the gate input is high. On terminal count, the output goes low for one clock pulse, then goes high again. Figure 2-43 shows the mode 4 timing diagram.

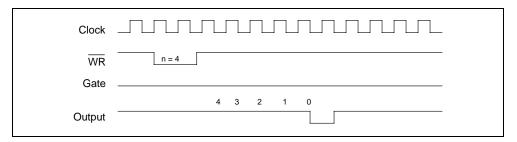



Figure 2-43. Mode 4 Timing Diagram

Mode 5 is similar to mode 4 except that the gate input is used as a trigger to start counting. Figure 2-44 shows the mode 5 timing diagram.

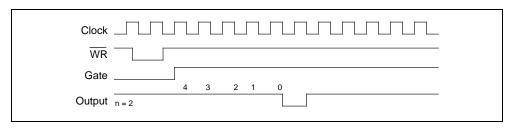



Figure 2-44. Mode 5 Timing Diagram

See the 8253 Programmable Interval Timer data sheet in your DAQCard-500/700 or Lab and 1200 Series user manual for a detailed description of these modes and the associated timing diagrams.

**count** is the period from one output pulse to the next.

Range for modes 0, 1, 4 and 5:

- 0 through 65,535 in binary counter operation.
- 0 through 9,999 in BCD counter operation.

Range for modes 2 and 3:

- 2 through 65,535 and 0 in binary counter operation.
- 2 through 9,999 and 0 in BCD counter operation.



**Note** Zero is equivalent to 65,536 in binary counter operation and 10,000 in BCD counter operation.



**Note** BASIC Programmers—NI-DAQ passes count as a 16-bit unsigned number. In BASIC, integer variables are represented by a 16-bit two's complement system. Thus, count values greater than 32,767 must be passed as negative numbers. One way to obtain the count value to be passed is to assign the required number between zero and 65,535 to a long variable and then obtain count as shown below:

```
count% = 1count& - 65,536
```

**binBcd** controls whether the counter operates as a 16-bit binary counter or as a 4-decade binary-coded decimal (BCD) counter.

- 0: 4-decade BCD counter.
- 1: 16-bit binary counter.

# Init DA Brds

## **Format**

status = Init\_DA\_Brds (deviceNumber, deviceNumberCode)

# **Purpose**

Initializes the hardware and software states of a National Instruments DAQ device to its default state, and then returns a numeric device code that corresponds to the type of device initialized. Any operation that the device is performing is halted.

### **Parameters**

# Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |

# Output

| Name             | Type | Description    |
|------------------|------|----------------|
| deviceNumberCode | *i16 | type of device |

## **Parameter Discussion**

**deviceNumberCode** indicates the type of device initialized.

- −1: Not a National Instruments DAQ device.
- 7: PC-DIO-24.
- 8: AT-DIO-32F.
- 12: PC-DIO-96.
- 13: PC-LPM-16.
- 14: PC-TIO-10.
- 15: AT-AO-6.
- 25: AT-MIO-16E-2.
- 26: AT-AO-10.
- 27: AT-A2150C.
- 28: Lab-PC+.
- 30: SCXI-1200.
- 31: DAQCard-700.
- 32: NEC-MIO-16E-4.
- 33: DAOPad-1200.
- 35: DAQCard-DIO-24.
- 36: AT-MIO-16E-10.

- 37: AT-MIO-16DE-10.
- 38: AT-MIO-64E-3.
- 39: AT-MIO-16XE-50.
- 40: NEC-AI-16E-4.
- 41: NEC-MIO-16XE-50.
- 42: NEC-AI-16XE-50.
- 43: DAQPad-MIO-16XE-50.
- 44: AT-MIO-16E-1.
- 45: PC-OPDIO-16.
- 46: PC-AO-2DC.
- 47: DAQCard-AO-2DC.
- 48: DAQCard-1200.
- 49: DAQCard-500.
- 50: AT-MIO-16XE-10.
- 51: AT-AI-16XE-10.
- 52: DAQCard-AI-16XE-50.
- 53: DAQCard-AI-16E-4.
- 54: DAQCard-516.
- 55: PC-516.
- 56: PC-LPM-16PnP.
- 57: Lab-PC-1200.
- 58: Lab-PC-1200AI.
- 59: VXI-MIO-64E-1.
- 60: VXI-MIO-64XE-10.
- 61: VXI-AO-48XDC.
- 62: VXI-DIO-128.
- 65: PC-DIO-24PnP.
- 66: PC-DIO-96PnP.
- 67: AT-DIO-32HS.
- 68: PXI-6533.
- 75: DAQPad-6507/6508.
- 76: DAQPad-6020E for USB.
- 88: DAQCard-6062E.
- 90: DAQCard-6023E.
- 91: DAQCard-6024E.
- 200: PCI-DIO-96.
- 201: PCI-1200.
- 202: PCI-MIO-16XE-50.
- 204: PCI-MIO-16XE-10.
- 205: PCI-MIO-16E-1.
- 206: PCI-MIO-16E-4.
- 207: PXI-6070E.
- 208: PXI-6040E.
- 209: PXI-6030E.

- 210: PXI-6011E.
- 211: PCI-DIO-32HS.
- 215: DAQCard-6533.
- 220: PCI-6031E (MIO-64XE-10).
- 221: PCI-6032E (AI-16XE-10).
- 222: PCI-6033E (AI-64XE-10).
- 223: PCI-6071E (MIO-64E-1).
- 232: PCI-6602.
- 233: PCI-4451.
- 234: PCI-4452.
- 235: NI 4551.
- 236: NI 4552.
- 237: PXI-6602.
- 240: PXI-6508.
- 241: PCI-6110E.
- 244: PCI-6111E.
- 256: PCI-6503.
- 261: PCI-6711.
- 262: PXI-6711.
- 263: PCI-6713.
- 264: PXI-6713.
- 265: PCI-6704.
- 266: PXI-6704.
- 267: PCI-6023E.
- 268: PXI-6023E.
- 269: PCI-6024E.
- 270: PXI-6024E.
- 271: PCI-6025E.
- 272: PXI-6025E.
- 273: PCI-6052E.
- 274: PXI-6052E.
- 275: DAQPad-6070E.
- 276: DAQPad-6052E.
- 285: PCI-6527.
- 286: PXI-6527.
- 308: PCI-6601.
- 311: PCI-6703.
- 314: PCI-6034E.
- 315: PXI-6034E.
- 316: PCI-6035E.

- 317: PXI-6035E.
- 318: PXI-6703.
- 319: PXI-6608.
- 320: PCI-4453.
- 321: PCI-4454.



**Note** C Programmers—**deviceNumberCode** is a pass-by-address parameter.

# **Using This Function**

Init\_DA\_Brds is called automatically and does not have to be explicitly called by your application. This function is useful for reinitializing the device hardware, for reinitializing the NI-DAQ software, and for determining which device has been assigned to a particular slot number. Init\_DA\_Brds clears all configured messages for the device just as if you called Config\_DAQ\_Event\_Message with a mode of 0. Init\_DA\_Brds initializes a device in a specified slot to the default conditions. These conditions are summarized for each device as follows:

- MIO and AI devices
  - Analog Input defaults:

number of channels = 2.

Mode = Differential.

Range = 20 V (10 V for 12-bit E Series).

Polarity = Bipolar (-10 V to +10 V for PCI-6110E, PCI-6111E, and all 16-bit E Series devices, except the 6052E; and -5 to +5 V for all other devices).

External conversion = Disabled.

Start trigger = Disabled.

Stop trigger = Disabled.

Coupling = DC coupling.

Analog Output defaults (MIO and 671X devices only):

Range = 20 V.

Reference = 10 V.

Mode = Bipolar (-10 to +10 V).

Level = 0 V.

Digital Input and Output defaults:

Direction = Input.

For ports 2, 3, and 4 of the 6052E devices and AT-MIO-16DE-10, see also the default conditions of ports 0, 1, and 2 of the DIO-24 (6503).

### DIO-24 (6503)/DIO-32F/DIO 6533 (DIO-32HS)/DIO-96

Digital Input and Output defaults:

Direction = Input.

Handshaking = Disabled.

Group assignments = No ports assigned to any group.

#### PC-TIO-10

Digital Input and Output defaults:

Mode = Differential.

Direction = Input.

Counter/Timer defaults:

Gating mode = No gating.

Output type = Terminal count toggled.

Output polarity = Positive.

Edge mode = Count rising edges.

Count mode = Count once.

Output level = Off.

### • 660X devices

Counter/Timer defaults:

Gating mode = Depends on the type of counter application.

Counter output type = Terminal count toggled.

Output value = Logic low.

Default polarity (gates, sources, outputs) = Active high.

Default internal timebase = 20 MHz.

Digital debouncing filters = Disabled.

Pad synchronization = Disabled.

Prescalers = Disabled.

Digital Input and Output defaults:

Direction =Input.

### VXI-DIO-128

Digital Input and Output defaults:

Direction = Input (ports 0 through 7).

Direction = Output (ports 8 through 15).

Input ports logic threshold: 1500 mV.

Chapter 2

#### VXI-AO-48XDC

Analog Output defaults:

Mode = Bipolar (-10 to 10 V).

Digital Input and Output defaults:

Direction = Input.

Range = 20 V.

Reference = 10 V.

#### Lab and 1200 Series devices

Analog Input defaults:

Input mode = Single-ended (eight single-ended input channels).

Polarity = Bipolar (-5 to +5 V).

External conversion = Disabled.

Start trigger = Disabled.

External conversion = Stop trigger = Disabled.

Analog Output defaults:

Mode = Bipolar (-5 to +5 V).

Range = 20 Level = 0 V.

Digital Input and Output defaults:

Direction = Input.

Handshaking = Disabled.

Group assignments = No ports assigned to any group.

Counter/Timer defaults:

Output level = Logical low.

### 516 and LPM devices and DAQCard-500/700

Analog Input default:

Mode = Single-ended (Differential also possible for 516 devices and DAQCard-700).

Reference = Range = 10 V.

Polarity = Bipolar (-5 to +5 V).

Stop trigger = External conversion = Disabled.

Mode = Differential.

Calibrated.

Digital Input and Output defaults:

Output port voltage level = 0 V.

Counter/Timer defaults:

Output level = Logical low.

### AT-AO-6/10

Analog Output defaults:

Range = 20 V.

Reference = 10 V.

Mode = Bipolar (-10 to +10 V).

Level = 0 V.

Group assignments = No channels assigned to any group.

Digital input and output defaults direction = Input.

Translate and demux = Disabled.

### • AO-2DC devices

Analog Output defaults:

Mode = Unipolar (0 to 10 V).

Level = 0 V.

Digital Input and Output defaults:

Direction = Input.

### DSA devices

Analog Input defaults:

Gain = 0 dB.

Coupling = AC coupling.

Start Trigger = Automatic.

Stop Trigger = Disabled.

Analog Output defaults:

Attenuation = 0 dB.

Output Enable = Off.

Digital Input and Output defaults:

Direction = Input.

Chapter 2

Analog Output defaults:

Voltage Outputs = at user defined levels.

Digital Input and Output defaults:

Direction = Input.

- 6704 devices:
  - Analog Output defaults:

Voltage Outputs = at user defined levels.

Current Outputs = at user defined levels.

Digital Input and Output defaults:

Direction = Input.

Of all these defaults, you can alter only the analog input and analog output settings of the Lab-PC+ and PC-LPM-16 devices by setting jumpers on the device. If you change the jumpers from the factory settings, you must call either AI\_Configure and/or AO\_Configure after Init\_DA\_Brds so that the software copies of these settings reflect the true settings of the device.

If any device resources have been reserved for SCXI use when you make a call to Init\_DA\_Brds, those resources will still be reserved after you make the function call. Refer to Chapter 12, SCXI Hardware, in the DAQ Hardware Overview Guide for listings of the different device resources that can be reserved for SCXI.

# Lab ISCAN Check

### **Format**

status = Lab\_ISCAN\_Check (deviceNumber, daqStopped, retrieved, finalScanOrder)

# **Purpose**

Checks whether the current multiple-channel scanned data acquisition begun by the Lab\_ISCAN\_Start function is complete and returns the status, the number of samples acquired to that point, and the scanning order of the channels in the data array (DAQCard-500/700 and 516, Lab and 1200 Series, and LPM devices only).

### **Parameters**

## Input

| Name         | Type | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |

# Output

| Name           | Туре  | Description                                          |
|----------------|-------|------------------------------------------------------|
| daqStopped     | *i16  | indicates whether the data acquisition has completed |
| retrieved      | *u32  | number of samples collected by the acquisition       |
| finalScanOrder | [i16] | the scan channel order                               |

### Parameter Discussion

daqStopped returns an indication of whether the data acquisition has completed.

- 1: The data acquisition operation has stopped. Either NI-DAQ has acquired all the samples or an error has occurred.
- 0: The data acquisition operation is not yet complete.

**retrieved** indicates the progress of an acquisition. The meaning of **retrieved** depends on whether you have enabled pretrigger mode (see DAQ\_StopTrigger\_Config).

If pretrigger mode is disabled, **retrieved** returns the number of samples collected by the acquisition at the time of the call to Lab\_ISCAN\_Check. The value of **retrieved** increases until it equals the total number of samples to be acquired, at which time the acquisition terminates.

However, if pretrigger mode is enabled, **retrieved** returns the offset of the position in your buffer where NI-DAQ places the next data point when the function acquires. After the value of **retrieved** reaches **count** – 1 and rolls over to 0, the acquisition begins to overwrite old data with new data. When you apply a signal to the stop trigger input, the acquisition collects an additional number of samples specified by **ptsAfterStoptrig** in the call to DAQ\_StopTrigger\_Config and then terminates. When Lab\_ISCAN\_Check returns a status of 1, **retrieved** contains the offset of the oldest data point in the array (assuming that the acquisition has written to the entire buffer at least once). In pretrigger mode, Lab\_ISCAN\_Check automatically rearranges the array upon completion of the acquisition so that the oldest data point is at the beginning of the array. Thus, **retrieved** always equals 0 upon completion of a pretrigger mode acquisition. Because the stop trigger can occur in the middle of a scan sequence, the acquisition can end in the middle of a scan sequence. So, when the function rearranges the data in the buffer, the first sample might not belong to the first channel in the scan sequence. You can examine the **finalScanOrder** array to find out the way the data is arranged in the buffer.

**finalScanOrder** is an array that indicates the scan channel order of the data in the buffer passed to Lab\_ISCAN\_Start. The size of **finalScanOrder** must be at least equal to the number of channels scanned. This parameter is valid only when NI-DAQ returns **daqStopped** as 1 and is useful only when you enable pretrigger mode (Lab and 1200 Series devices only).

If you do not use pretrigger mode, the values contained in **finalScanOrder** are, in single-ended mode, n-1, n-2,...1, 0 to 0, in that order, and in differential mode, 2\*(n-1), 2\*(n-2),..., 2, 0, in that order, where n is the number of channels scanned. For example, if you scanned three channels in single-ended mode, the **finalScanOrder** returns:

finalScanOrder[0] = 2. finalScanOrder[1] = 1.finalScanOrder[2] = 0.

So the first sample in the buffer belongs to channel 2, the second sample belongs to channel 1, the third sample belong to channel 0, the fourth sample belongs to channel 2, and so on. This is the scan order expected from the Lab-PC+ and **finalScanOrder** is not useful in this case.

If you use pretrigger mode, the order of the channel numbers in **finalScanOrder** depends on where in the scan sequence the acquisition ended. This can vary because the stop trigger can occur in the middle of a scan sequence, which would cause the acquisition to end in the middle of a scan sequence so that the oldest data point in the buffer can belong to any channel in the scan sequence. Lab\_ISCAN\_Check rearranges the buffer so that the oldest data point is at index 0 in the buffer. This rearrangement causes the scanning order to change. This new scanning order is returned by **finalScanOrder**. For example, if you scanned three channels, the original scan order is channel 2, channel 1, channel 0, and

so on. However, after the stop trigger, if the acquisition ends after taking a sample from channel 1, the oldest data point belongs to channel 0. So **finalScanOrder** returns:

finalScanOrder[0] = 0. finalScanOrder[1] = 2.finalScanOrder[2] = 1.

So the first sample in the buffer belongs to channel 0, the second sample belongs to channel 2, the third sample belongs to channel 1, the fourth sample belongs to channel 0, and so on.



**Note** C Programmers—**daqStopped** and **retrieved** are pass-by-address parameters.

# **Using This Function**

Lab\_ISCAN\_Check checks the current background data acquisition operation to determine whether it has completed and returns the number of samples acquired at the time that you called Lab\_ISCAN\_Check. If the operation is complete, Lab\_ISCAN\_Check sets daqStopped = 1. Otherwise, daqStopped is set to 0. Before Lab\_ISCAN\_Check returns daqStopped = 1, it calls DAQ\_Clear, allowing another Start call to execute immediately.

If Lab\_ISCAN\_Check returns an **overFlowError** or an **overRunError**, NI-DAQ has terminated the data acquisition operation because of lost A/D conversions due to a sample rate that is too high (sample interval was too small). An **overFlowError** indicates that the A/D FIFO memory overflowed because the data acquisition servicing operation was not able to keep up with sample rate. An **overRunError** indicates that the data acquisition circuitry was not able to keep up with the sample rate. Before returning either of these error codes, Lab\_ISCAN\_Check calls DAQ\_Clear to terminate the operation and reinitialize the data acquisition circuitry.

### Format

status = Lab\_ISCAN\_Op (deviceNumber, numChans, gain, buffer, count, sampleRate, scanRate, finalScanOrder)

# **Purpose**

Performs a synchronous, multiple-channel scanned data acquisition operation. Lab\_ISCAN\_Op does not return until NI-DAQ has acquired all the data or an acquisition error has occurred (DAQCard-500/700 and 516, Lab and 1200 Series, and LPM devices only).

Chapter 2

## **Parameters**

# Input

| Name         | Туре | Description                           |
|--------------|------|---------------------------------------|
| deviceNumber | i16  | assigned by configuration utility     |
| numChans     | i16  | number of channels to be scanned      |
| gain         | i16  | gain setting                          |
| count        | u32  | number of samples to be acquired      |
| sampleRate   | f64  | desired sample rate in units of pts/s |
| scanRate     | f64  | desired scan rate in units of scans/s |

# Output

| Name           | Type  | Description                        |
|----------------|-------|------------------------------------|
| finalScanOrder | [i16] | the scan channel order of the data |

# Input/Output

| Name   | Type  | Description                 |
|--------|-------|-----------------------------|
| buffer | [i16] | conversion samples returned |

## **Parameter Discussion**

**numChans** is the number of channels to be scanned in a single scans sequence. The value of this parameter also determines which channels NI-DAQ scans because these devices have a fixed scanning order. The scanned channels range from **numChans** – 1 to channel 0. If you are using SCXI modules with additional multiplexers, you must scan the analog input

channels on the DAQ device that corresponds to the SCXI channels you want. You should select the SCXI scan list using SCXI\_SCAN\_Setup before you call this function. Refer to the NI-DAQ User Manual for PC Compatibles for more information on SCXI channel assignments.

Range: 1 through 4 for the 516 and Lab and 1200 Series devices in differential mode.

1 through 8 for DAQCard-500 (single-ended mode only).

1 through 8 for DAQCard-700 in differential mode.

1 through 8 for the Lab and 1200 Series devices in single-ended mode.

1 through 16 for LPM devices or DAQCard-700 in single-ended mode.

gain is the gain setting to be used for the scanning operation. The same gain is applied to all the channels scanned. This gain setting applies only to the DAQ device; if you use SCXI modules with additional gain selection, you must establish any gain you want at the SCXI module either by setting jumpers on the module or by calling SCXI\_Set\_Gain. The following gain settings are valid for the Lab and 1200 Series devices—1, 2, 5, 10, 20, 50, and 100. If you use an invalid gain, NI-DAQ returns an error. NI-DAQ ignores gain for the DAQCard-500/700 and 516 and LPM devices.

**buffer** is an integer array. **buffer** must have a length not less than **count**. When Lab\_ISCAN\_Op returns with an error code of zero, **buffer** contains the acquired data.

**count** is the number of samples to be acquired (that is, the number of A/D conversions to be performed).

Range: 3 through  $2^{32} - 1$  (except Lab and 1200 Series devices, which are limited to

65,535).

**sampleRate** is the sample rate you want in units of pts/s.

Range: Roughly 0.00153 pts/s through 62,500 pts/s (Lab and 1200 Series devices).

Roughly 0.00153 pts/s through 50,000 pts/s (DAQCard-500/700 and 516 and

LPM devices).



**Note** If you are using an SCXI-1200 with remote SCXI, the maximum rate depends on the baud rate setting and count. Refer to the *SCXI-1200 User Manual* for more details.

**scanRate** is the scan rate you want in units of scans per second. This is the rate at which NI-DAQ performs scans. NI-DAQ performs a scan each time NI-DAQ samples all channels in the scan sequence. **ScanRate** must be slightly less than **sampleRate/numChans** due to a 5 µs delay interval to the driver. Lab\_ISCAN interval scanning is available on the Lab and 1200 Series devices only.

Range: 0 and roughly 0.00153 scans/s through 62,500 scans/s.



**Note** If you are using an SCXI-1200 with remote SCXI, the maximum rate depends on the baud rate setting and count. Refer to the SCXI-1200 User Manual for more details.

A value of 0 disables interval scanning.

**finalScanOrder** is an array that indicates the scan channel order of the data in the buffer passed to Lab\_ISCAN\_Op. The size of **finalScanOrder** must be at least equal to the number of channels scanned. This parameter is valid only when the error is returned to zero and is useful only when pretrigger mode is enabled (Lab and 1200 Series devices only).

If you do not use pretrigger mode, the values contained in **finalScanOrder** are, in single-ended mode, n-1, n-2, ..., 1, 0, in that order, and in differential mode, 2 (n-1), 2 (n-2), ..., 1, 0, in that order, where n is the number of channels scanned. For example, if you scanned three channels in single-ended mode, the **finalScanOrder** returns:

```
finalScanOrder[0] = 2.

finalScanOrder[1] = 1.

finalScanOrder[2] = 0.
```

So the first sample in the buffer belongs to channel 2, the second sample belongs to channel 1, the third sample belongs to channel 0, the fourth sample belongs to channel 2, and so on. This is exactly the scan order you would expect from the Lab and 1200 Series devices and **finalScanOrder** is not useful in this case.

If you use pretrigger mode, the order of the channel numbers in **finalScanOrder** depends on where in the scan sequence the acquisition ended. This can vary because the stop trigger can occur in the middle of a scan sequence, which causes the acquisition to end in the middle of a scan sequence so that the oldest data point in the buffer can belong to any channel in the scan sequence. Lab\_ISCAN\_Op rearranges the buffer so that the oldest data point is at index 0 in the buffer. This rearrangement causes the scanning order to change. This new scanning order is returned by **finalScanOrder**. For example, if you scanned three channels, the original scan order is channel 2, channel 1, channel 0, channel 2, and so on. However, after the stop trigger, if the acquisition ends after taking a sample from channel 1, the oldest data point belongs to channel 0.

#### So **finalScanOrder** returns:

```
finalScanOrder[0] = 0.
finalScanOrder[1] = 2.
finalScanOrder[2] = 1.
```

Therefore the first sample in the buffer belongs to channel 0, the second sample belongs to channel 2, the third sample belongs to channel 1, the fourth sample belongs to channel 0, and so on.

# **Using This Function**

Lab\_ISCAN\_Op initiates a synchronous process of acquiring A/D conversion samples and storing them in a buffer. Lab\_ISCAN\_Op does not return control to your application until NI-DAQ acquires all the samples you want (or until an acquisition error occurs). When you use posttrigger mode, the process stores **count** A/D conversions in the buffer and ignores any subsequent conversions.



**Note** If you have selected external start triggering of the data acquisition operation, a low-to-high edge at the EXTTRIG of the Lab and 1200 Series device I/O connector input initiates the operation. Be aware that if you do not apply the start trigger, Lab\_ISCAN\_Op does not return control to your application. Otherwise, Lab\_ISCAN\_Op issues a software trigger to initiate the data acquisition operation.

If you have enabled pretrigger mode, the sample counter does not begin counting acquisitions until a signal is applied at the stop trigger input. Until this signal is applied, the acquisition remains in a cyclical mode, continually overwriting old data in the buffer with new data. Again, if the stop trigger is not applied, Lab\_ISCAN\_Op does not return control to your application.

In any case, you can use Timeout\_Config to establish a maximum length of time for Lab\_ISCAN\_Op to execute.

# Lab ISCAN Start

### **Format**

status = Lab\_ISCAN\_Start (deviceNumber, numChans, gain, buffer, count, sampTimebase, sampInterval, scanInterval)

# **Purpose**

Initiates a multiple-channel scanned data acquisition operation and stores its input in an array (DAQCard-500/700 and 516, Lab and 1200 Series, and LPM devices only).

### **Parameters**

## Input

| Name         | Туре | Description                                                   |
|--------------|------|---------------------------------------------------------------|
| deviceNumber | i16  | assigned by configuration utility                             |
| numChans     | i16  | number of channels to be scanned                              |
| gain         | i16  | gain setting                                                  |
| count        | u32  | total number of samples to be acquired                        |
| sampTimebase | i16  | timebase, or resolution, used for the sample interval counter |
| sampInterval | u16  | length of the sample interval                                 |
| scanInterval | u16  | length of the scan interval                                   |

# Input/Output

| Name   | Туре  | Description                 |
|--------|-------|-----------------------------|
| buffer | [i16] | conversion samples returned |

## **Parameter Discussion**

**numChans** is the number of channels to be scanned in a single scan sequence. The value of this parameter also determines which channels NI-DAQ scans because these supported devices have a fixed scanning order. The scanned channels range from **numChans** – 1 to channel 0. If you are using SCXI modules with additional multiplexers, you must scan the appropriate analog input channels on the DAQ device that corresponds to the SCXI channels you want. You should select the SCXI scan list using SCXI\_SCAN\_Setup before you call this function. Refer to Chapter 12, SCXI Hardware, in the DAQ Hardware Overview Guide and

the *NI-DAQ User Manual for PC Compatibles* for more information on SCXI channel assignments.

Range: 1 through 4 for the 516 and Lab and 1200 Series devices in differential mode.

1 through 8 for the DAQCard-500 (single-ended mode only).

1 through 8 for the DAQCard-700 in differential mode.

1 through 8 for the 516 and Lab and 1200 Series devices in single-ended mode. 1 through 16 for the DAQCard-700 and LPM devices in single-ended mode.

gain is the gain setting to be used for the scanning operation. NI-DAQ applies the same gain to all the channels scanned. This gain setting applies only to the DAQ device; if you are using SCXI modules with additional gain selection, you must establish any gain you want at the SCXI module either by setting jumpers on the module or by calling SCXI\_Set\_Gain. The following gain settings are valid for the Lab and 1200 Series devices: 1, 2, 5, 10, 20, 50, 100. If you use an invalid gain setting, NI-DAQ returns an error. NI-DAQ ignores gain for the DAQCard-500/700 and 516 and LPM devices.

**buffer** is an integer array. **buffer** must have a length equal to or greater than **count**.

**count** is the total number of samples to be acquired (that is, the number of A/D conversions to be performed). For double-buffered acquisitions, **count** must be even.

Range: 3 through  $2^{32} - 1$  (except the Lab and 1200 Series devices, which are limited to 65,535 unless enabled for double-buffered mode).

**sampTimebase** is the timebase, or resolution, to be used for the sample-interval counter. The sample-interval counter controls the time that elapses between acquisition of samples within a scan sequence.

**sampTimebase** has the following possible values:

- 1: 1 MHz clock used as timebase (1 µs resolution).
- 2: 100 kHz clock used as timebase (10 us resolution).
- 3: 10 kHz clock used as timebase (100 µs resolution).
- 4: 1 kHz clock used as timebase (1 ms resolution).
- 5: 100 Hz clock used as timebase (10 ms resolution).

If sample-interval timing is to be externally controlled, NI-DAQ ignores **sampTimebase** and the parameter can be any value.

**sampInterval** indicates the length of the sample interval (that is, the amount of time to elapse between each A/D conversion within a scan sequence).

Range: 2 through 65,535.

The sample interval is a function of the timebase resolution. NI-DAQ determines the actual sample interval in seconds by the following formula:

sampInterval \* (sample timebase resolution)

where the sample timebase resolution is equal to one of the values of **sampTimebase** as specified above. For example, if **sampInterval** = 25 and **sampTimebase** = 2, the actual sample interval is  $25 * 10 \mu s = 250 \mu s$ . The total sample interval (the time to complete one scan sequence) in seconds is the actual sample interval \* number of channels scanned. If the sample interval is to be externally controlled by conversion pulses applied to the EXTCONV\* input, NI-DAQ ignores the **sampInterval** and the parameter can be any value.

scanInterval indicates the length of the scan interval. This is the amount of time to elapse between scans. The timebase for this parameter is actually the **sampTimebase** parameter. The function performs a scan each time NI-DAQ samples all channels in the scan sequence. Therefore, **scanInterval** must be greater than or equal to **sampInterval** \* **numChans** +5  $\mu$ s. Range: 0 and 2 through 65,535.

A value of 0 disables interval scanning. Lab\_ISCAN interval scanning is not available on the DAQCard-500/700 and 516 and LPM devices.

# **Using This Function**

If you did not specify external sample-interval timing by the DAQ\_Config call, NI-DAQ sets the sample-interval counter to the specified **sampInterval** and **sampTimebase**, and sets the sample counter up to count the number of samples acquired and to stop the data acquisition process when the number of samples acquired equals **count**. If you have specified external sample-interval timing, the data acquisition circuitry relies on pulses received on the EXTCONV\* input to initiate individual A/D conversions.

Lab\_ISCAN\_Start initializes a background data acquisition process to handle storing of A/D conversion samples into the buffer as NI-DAQ acquires them. When you use posttrigger mode (with pretrigger mode disabled), the process stores up to **count** A/D conversion samples into the buffer and ignores any subsequent conversions. The order of the scan is from channel n-l to channel 0, where n is the number of channels being scanned. For example, if **numChans** is 3 (that is, you are scanning three channels), NI-DAQ stores the data in the buffer in the following order:

First sample from channel 2, first sample from channel 1, first sample from channel 0, second sample from channel 2, and so on.

You cannot make the second call to Lab\_ISCAN\_Start without terminating this background data acquisition process. If a call to Lab\_ISCAN\_Check returns **daqStopped** = 1, the samples are available and NI-DAQ terminates the process. In addition, a call to DAQ\_Clear terminates the background data acquisition process. Notice that if a call to Lab\_ISCAN\_Check returns **overFlowError** or **overRunError**, or returns with **daqStopped** = 1, the process is automatically terminated and there is no need to call DAQ\_Clear.

For the Lab and 1200 Series devices, if you enable pretrigger mode, Lab\_ISCAN\_Start initiates a cyclical acquisition that continually fills the buffer with data, wrapping around to the start of the buffer once NI-DAQ has written to the entire buffer. When you apply the signal at the stop trigger input, Lab\_ISCAN\_Start acquires an additional number of samples specified by the **ptsAfterStoptrig** parameter in DAO StopTrigger Config and then terminates.

Because the trigger can occur at any point in the scan sequence, the scanning operation can end in the middle of a scan sequence. See the description for Lab\_ISCAN\_Check to determine how NI-DAQ rearranges the buffer after the acquisition ends. When you enable pretrigger mode, the length of the buffer, which is greater than or equal to **count**, should be an integral multiple of **numChans**.

If you have selected external start triggering of the data acquisition operation, a low-to-high edge at the EXTTRIG of the Lab and 1200 Series device I/O connector input initiates the data acquisition operation after the Lab\_ISCAN\_Start call is complete. Otherwise, Lab\_ISCAN\_Start issues a software trigger to initiate the data acquisition operation before returning.



Note If your application calls Lab\_ISCAN\_Start, always make sure that you call DAQ\_Clear before your application terminates and returns control to the operating system. Unless you make this call (either directly, or indirectly through Lab\_ISCAN\_Check or DAQ\_DB\_Transfer), unpredictable behavior might result.

# Lab ISCAN to Disk

### **Format**

status = Lab\_ISCAN\_to\_Disk (deviceNumber, numChans, gain, filename, count, sampleRate, scanRate, concat)

# **Purpose**

Performs a synchronous, multiple-channel scanned data acquisition operation and simultaneously saves the acquired data in a disk file. Lab\_ISCAN\_to\_Disk does not return until NI-DAQ has acquired and saved all the data or an acquisition error has occurred (DAQCard-500/700 and 516, Lab and 1200 Series, and LPM devices only).

#### **Parameters**

## Input

| Name         | Туре | Description                                       |  |
|--------------|------|---------------------------------------------------|--|
| deviceNumber | i16  | assigned by configuration utility                 |  |
| numChans     | i16  | number of channels to be scanned                  |  |
| gain         | i16  | gain setting                                      |  |
| filename     | STR  | name of the data file to be created               |  |
| count        | u32  | number of samples to be acquired                  |  |
| sampleRate   | f64  | desired sample rate in units of points per second |  |
| scanRate     | f64  | desired scan rate in units of points per second   |  |
| concat       | i16  | enables concatenation of data to an existing file |  |

## **Parameter Discussion**

**numChans** is the number of channels to be scanned in a single scan sequence. The value of this parameter also determines which channels NI-DAQ scans because these supported devices have a fixed scanning order. The scanned channels range from **numChans** – 1 to channel 0. If you are using SCXI modules with additional multiplexers, you must scan the appropriate analog input channels on the DAQ device that corresponds to the SCXI channels you want. You should select the SCXI scan list using SCXI\_SCAN\_Setup before you call this function. Refer to Chapter 12, SCXI Hardware, in the DAQ Hardware Overview Guide and the NI-DAQ User Manual for PC Compatibles for more information on SCXI channel assignments.

Range: 1 through 4 for the 516 and Lab and 1200 Series devices in differential mode.

1 through 8 for the DAQCard-500 (single-ended mode only).

1 through 8 for the DAQCard-700 in differential mode.

1 through 8 for the 516 and Lab and 1200 Series devices in single-ended mode.

1 through 16 for the DAQCard-700 and LPM devices in single-ended mode.

gain is the gain setting to be used for the scanning operation. NI-DAQ applies the same gain to all the channels scanned. This gain setting applies only to the DAQ device; if you use SCXI modules with additional gain selection, you must establish any gain you want at the SCXI module either by setting jumpers on the module or by calling SCXI\_Set\_Gain. The following gain settings are valid for the Lab and 1200 Series devices: 1, 2, 5, 10, 20, 50, 100. If you use an invalid gain setting, NI-DAQ returns an error. NI-DAQ ignores gain for the DAQCard-500/700 and LPM devices.

**count** is the number of samples to be acquired (that is, the number of A/D conversions to be performed). The length of your data file should be exactly twice the value of **count**. If you have previously enabled pretrigger mode (by a call to DAQ\_StopTrigger\_Config) NI-DAQ ignores the **count** parameter.

Range:  $3 \text{ through } 2^{32} - 1.$ 

sampleRate is the sample rate you want in units of points per second.

Range: Roughly 0.00153 pts/s through 62,500 pts/s (Lab and 1200 Series devices).

Roughly 0.00153 pts/s through 50,000 pts/s (DAQCard-500/700 and 516 and

LPM devices).

**Note** If you are using an SCXI-1200 with remote SCXI, the maximum rate will depend on the baud rate setting and count. Refer to the *SCXI-1200 User Manual* for more details.

**scanRate** is the scan rate you want in units of points per second. This is the rate at which NI-DAQ performs scans. The function performs a scan each time NI-DAQ samples all channels in the scan sequence. Therefore, **scanRate** must be equal to or greater than (**sampleRate**)/(**numChans**). Lab\_ISCAN interval scanning is available on the Lab and 1200 Series devices only.

Range: 0 and roughly 0.00153 pts/s through 62,500 pts/s.



**Note** If you are using an SCXI-1200 with remote SCXI, the maximum rate will depend on the baud setting. Refer to the *SCXI-1200 User Manual* for more details.

A value of 0 disables interval scanning.

**concat** enables concatenation of data to an existing file. Regardless of the value of **concat**, if the file does not exist. NI-DAO creates the file.

0: Overwrite file if it exists.

1: Concatenate new data to an existing file.

# **Using This Function**

Lab\_ISCAN\_to\_Disk initiates a synchronous process of acquiring A/D conversion samples and storing them in a disk file. Data is written to disk in a 16-bit binary format, with the lower byte first (little endian). Lab\_ISCAN\_to\_Disk does not return control to your application until NI-DAQ acquires and saves all the samples you want (or until an acquisition error occurs). For the Lab and 1200 Series devices, when you use posttrigger mode, the process stores **count** A/D conversions in the file and ignores any subsequent conversions.



**Note** If you have selected external start triggering of the data acquisition operation, a low-to-high edge at the EXTTRIG of the Lab and 1200 Series device I/O connector input initiates the data acquisition operation. Be aware that if you do not apply the start trigger, Lab\_ISCAN\_to\_Disk does not return control to your application. Otherwise, Lab\_ISCAN\_to\_Disk issues a software trigger to initiate the data acquisition operation.

If you have enabled pretrigger mode, the sample counter does not begin counting acquisitions until you apply a signal at the stop trigger input. Until you apply this signal, the acquisition continues to write data into the disk file. NI-DAQ ignores the value of the **count** parameter when you enable pretrigger mode. If you do not apply the stop trigger, Lab\_ISCAN\_to\_Disk returns control to your application because you eventually run out of disk space.

In any case, you can use Timeout\_Config to establish a maximum length of time for Lab\_ISCAN\_to\_Disk to execute.

# Line\_Change\_Attribute

#### **Format**

status = Line\_Change\_Attribute (deviceNumber, lineNum, attribID, attribValue)

# **Purpose**

Sets various options on an input/output (I/O) connector and internal lines (NI-TIO based devices only).

#### **Parameters**

## Input

| Name         | Туре | Description                                        |  |
|--------------|------|----------------------------------------------------|--|
| deviceNumber | i16  | assigned by configuration utility                  |  |
| lineNum      | u32  | name of the line you want to set properties of     |  |
| attribID     | u32  | identification of the attribute you want to change |  |
| attribValue  | u32  | value of the attribute specified by attribID       |  |

### Parameter Discussion

Legal ranges for the **lineNum**, **attribID** and **attribValue** parameters are in terms of constants defined in a header file. The header file you should use depends on the language you are using:

- C programmers—NIDAQCNS.H (DATAACQ.H for LabWindows/CVI)
- BASIC programmers—NIDAQCNS.INC (Visual Basic for Windows programmers should refer to the *Programming Language Considerations* section in Chapter 1, *Using the NI-DAQ Functions*, for more information.)
- Pascal programmers—NIDAQCNS.PAS

**lineNum** indicates which line you want to change the attributes of. Legal values for this parameter are ND\_PFI\_0 through ND\_PFI\_39, ND\_RTSI\_0 through ND\_RTSI\_6, and ND\_RTSI\_CLOCK.

**attribID** indicates which feature you are interested in changing. Legal values are listed in the following paragraphs, along with the corresponding values you can expect for **attribValue**.

**attribID** = ND\_LINE\_FILTER (valid for **lineNum** = ND\_PFI\_0 through ND\_PFI\_39 only)

| attribValue            | Description                                                                                                        |  |  |
|------------------------|--------------------------------------------------------------------------------------------------------------------|--|--|
| ND_SYNCHRONIZATION     | Synchronizes the signal using the ND_INTERNAL_MAX_TIMEBASE                                                         |  |  |
| ND_5_MICROSECONDS      | Filters the signal using a 100 kHz filter                                                                          |  |  |
| ND_1_MICROSECONDS      | Filters the signal using a a 500 kHz filter                                                                        |  |  |
| ND_500_NANOSECONDS     | Filters the signal using a 1 MHz filter                                                                            |  |  |
| ND_100_NANOSECONDS     | Filters the signal using a 5 MHz filter                                                                            |  |  |
| ND_CONFIGURABLE_FILTER | Filters the signal using a custom filter clock. See Select_Signal.                                                 |  |  |
| ND_NONE (default)      | Uses no filtering or synchronization. The signal in this case passes through "as is." This is the default setting. |  |  |

attribID = ND\_LINE\_FILTER (valid for lineNum = ND\_RTSI\_0 through ND\_RTSI\_6 and ND\_RTSI\_CLOCK only)

| attribValue        | Description                                                                            |  |
|--------------------|----------------------------------------------------------------------------------------|--|
| ND_SYNCHRONIZATION | Synchronizes the RTSI line with the ND_INTERNAL_MAX_TIMEBASE                           |  |
| ND_NONE (default)  | Uses no synchronization. The signal passes through as is. This is the default setting. |  |

# **Using This Function**

When attribID = ND\_LINE\_FILTER and attribValue = ND\_SYNCHRONIZATION, Line\_Change\_Attribute helps the NI-TIO based device synchronize itself with external clock pulses.

The RTSI lines can accept an external clock as one of their inputs. The external clock will probably not be synchronized with the internal clock on an NI-TIO based device. If the two clocks are not in synchronization, it is possible for the NI-TIO based device to miss or miscount a signal. Calling Line\_Change\_Attribute with attribID = ND\_LINE\_FILTER and attribValue = ND\_SYNCHRONIZATION establishes synchronization by delaying the external clock referenced pulse until the device can count the pulse. The device can count the external clocked pulse during the next internal clock pulse. Refer to your device manual for more details.

# **Example**

```
status = Line_Change_Attribute (1, ND_PFI_36, ND_LINE_FILTER,
ND_SYNCHRONIZATION);
```

This example synchronizes any pulses coming in on PFI 36 with the ND\_INTERNAL\_MAX\_TIMEBASE of the NI-TIO chip.

# LPM16\_Calibrate

### **Format**

status = LPM16\_Calibrate (deviceNumber)

# **Purpose**

Calibrates the LPM devices converter.

## **Parameters**

## Input

| Name         | Type | Description                       |  |
|--------------|------|-----------------------------------|--|
| deviceNumber | i16  | assigned by configuration utility |  |

# **Using This Function**

When the function is called, the ADC1241 ADC goes into a self-calibration cycle. The function does not return until the self-calibration is completed. The calibration calculates the correct offset voltage for the voltage comparator, adjusts positive linearity and full-scale errors to less than  $\pm 0.5$  LSB each, and adjusts zero error to less than  $\pm 1$  LSB.

# MIO\_Config

## **Format**

status = MIO\_Config (deviceNumber, dither, useAMUX)

# **Purpose**

Turns dithering (the addition of Gaussian noise to the analog input signal) on and of, for an E Series device. This function also lets you specify whether to use AMUX-64T channels or onboard channels for devices with 64 channels.

### **Parameters**

## Input

| Name         | Туре | Description                                                                          |  |
|--------------|------|--------------------------------------------------------------------------------------|--|
| deviceNumber | i16  | assigned by configuration utility                                                    |  |
| dither       | i16  | whether to add approximately 0.5 LSB rms of white Gaussian noise to the input signal |  |
| useAMUX      | i16  | whether to use AMUX-64T input channels or onboard channels for 64 channel devices    |  |

## **Parameter Discussion**

**dither** indicates whether to add approximately 0.5 LSB rms of white Gaussian noise to the input signal. This is useful for applications that involve averaging to increase the effective resolution of a device. For high-speed applications that do not involve averaging, dithering is not recommended and should be disabled.

- 0: Disable dithering.
- 1: Enable dithering.

This parameter is ignored for the 16-bit E Series devices. Dithering is always enabled on these devices.

**useAMUX** is valid for the devices with 64 channels only.

- 1: To use AMUX-64T channels.
- 0: To use onboard channels.

# **Using This Function**

To use the AMUX-64T with devices with 64 channels, you must call this function to specify whether to use the AMUX-64T input channels or the onboard channels for these devices. For example, if you have one AMUX-64T device connected to the MIO connector of a 64 channel device, channel numbers 16 through 63 are duplicated. To use AMUX-64T channel 20, you must call MIO\_Config with **useAMUX** set to 1. Later, if you decide to use onboard channel 20, you must call MIO\_Config with **useAMUX** set to 0.

Chapter 2

# **RTSI Clear**

### **Format**

status = RTSI\_Clear (deviceNumber)

# **Purpose**

Disconnects all RTSI bus trigger lines from signals on the specified device.

### **Parameter**

## Input

| Name         | Туре | Description                       |  |
|--------------|------|-----------------------------------|--|
| deviceNumber | i16  | assigned by configuration utility |  |

# **Using This Function**

RTSI\_Clear clears all RTSI bus trigger line connections from the specified device, including a system clock signal connected through a call to RTSI\_Clock (you can connect or disconnect other device system clocks only by changing jumpers on the devices). After you execute RTSI\_Clear, the device is neither driving signals onto any trigger line nor receiving signals from any trigger line. You can use this call to reset the device RTSI bus interface.

#### **Format**

status = RTSI\_Clock (deviceNumber, connect, dir)

# **Purpose**

Connects or disconnects the system clock from the RTSI bus if the device can be programmed to do so. You can connect or disconnect the other device system clock signals to and from the RTSI bus using jumper settings.

Chapter 2

### **Parameters**

## Input

| Name         | Type | Description                            |  |
|--------------|------|----------------------------------------|--|
| deviceNumber | i16  | assigned by configuration utility      |  |
| connect      | i16  | connect or disconnect the system clock |  |
| dir          | i16  | direction of the connection            |  |

### **Parameter Discussion**

connect indicates whether to connect or disconnect the system clock from the RTSI bus.

- 0: Disconnect.
- 1: Connect.

**dir** indicates the direction of the connection. If **connect** is 0, **dir** is meaningless.

- 0: Receive clock signal from the RTSI bus trigger line.
- 1: Transmit clock signal to the RTSI bus trigger line.

# **Using This Function**

RTSI\_Clock can connect the onboard system clock of an AT-AO-6/10 or a DIO 6533 (DIO-32HS) to the RTSI bus. Calling RTSI\_Clock with **connect** equal to 1 and **dir** equal to 1 configures the specified **deviceNumber** to transmit its system clock signal onto the RTSI bus. You do not need to specify a RTSI bus trigger line because NI-DAQ uses a dedicated line. Calling RTSI\_Clock with **connect** equal to 1 and **dir** equal to 0 configures the specified **deviceNumber** to use the signal on the RTSI bus dedicated clock pin as this device system clock. In this way, the two devices are controlled by a single system clock.

Calling RTSI\_Clock with **connect** equal to 0 disconnects the clock signal from the RTSI bus. RTSI\_Clear also disconnects the clock signal from the RTSI bus.

RTSI\_Clock always returns an error if **deviceNumber** is not an AT-AO-6/10, AT-DIO-32F, or a DIO 6533 (DIO-32HS). To connect the system clock signal of any other device to the RTSI bus, you must change a jumper setting on the device. See the appropriate user manual for instructions.



Note If you are using an E Series, 660X, or DSA device, see the Select\_Signal function.

# RTSI\_Conn

## **Format**

status = RTSI\_Conn (deviceNumber, sigCode, trigLine, dir)

# **Purpose**

Connects a device to the specified RTSI bus trigger line.

## **Parameters**

# Input

| Name         | Туре | Description                        |  |
|--------------|------|------------------------------------|--|
| deviceNumber | i16  | assigned by configuration utility  |  |
| sigCode      | i16  | signal code number to be connected |  |
| trigLine     | i16  | RTSI bus trigger line              |  |
| dir          | i16  | direction of the connection        |  |

# **Parameter Discussion**

**sigCode** is the signal code number of the device signal to be connected to the trigger line. Signal code numbers for each device type are shown in the following tables.

| Table 2-26. | AT-AO-6/10. | DAQPad-6713. | , and DIO-32F RTSI Bus Signals |
|-------------|-------------|--------------|--------------------------------|
|             |             |              |                                |

| Device          | Signal Name | Signal Direction | Signal Code |
|-----------------|-------------|------------------|-------------|
| AT-AO-6/10      | OUT0*       | Source           | 0           |
| and DAQPad-6713 | GATE2       | Receiver         | 1           |
|                 | EXTUPD*     | Source           | 2           |
|                 | OUT2*       | Source           | 3           |
|                 | OUT1*       | Source           | 4           |
|                 | EXTUPDATE*  | Bidirectional    | 5           |
| DIO-32F         | REQ1        | Receiver         | 0           |
|                 | REQ2        | Receiver         | 1           |
|                 | ACK1        | Source           | 2           |
|                 | ACK2        | Source           | 3           |

Table 2-27. DIO 6533 RTSI Bus Signals

| Signal<br>Name | Signal Direction<br>(Pattern Direction)                             | Signal Direction<br>(Handshaking,<br>No Pattern<br>Generation) | Signal Direction (No Handshaking) | Signal Code |
|----------------|---------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------|-------------|
| REQ1           | Receiver<br>(external requests)<br>or source<br>(internal requests) | Receiver                                                       | Receiver                          | 0           |
| REQ2           | Receiver<br>(external requests)<br>or source<br>(internal requests) | Receiver                                                       | Receiver                          | 1           |
| ACK1           | Receiver (STARTTRIG1)                                               | Source                                                         | Source                            | 2           |
| ACK2           | Receiver (STARTRIG2)                                                | Source                                                         | Source                            | 3           |
| STOPT<br>RIG1  | Receiver                                                            | Unused                                                         | Receiver                          | 4           |
| STOPT<br>RIG2  | Receiver                                                            | Unused                                                         | Receiver                          | 5           |
| PCLK1          | Unused                                                              | Source<br>(internal clock)<br>or receiver<br>(external clock)  | Source                            | 6           |
| PCLK2          | Unused                                                              | Source<br>(internal clock)<br>or receiver<br>(external clock)  | Source                            | 7           |

**trigLine** is the RTSI bus trigger line that is to be connected to the signal.

Range: 0 through 6.

**dir** is the direction of the connection.

- 0: Receive signal (input, receiver) from the RTSI bus trigger line.
- 1: Transmit signal (output, source) to the RTSI bus trigger line.

# **Using This Function**

RTSI\_Conn programs the RTSI interface on the specified **deviceNumber** such that NI-DAQ connects the signal identified by **sigCode** to the trigger line specified by **trigLine**.

For example, if the specified **deviceNumber** is a DIO 6533 device, the device **sigCode** is 0, the RTSI **trigLine** is 3, and the **dir** is 1. NI-DAQ drives the output produced by REQ1 on the specified **deviceNumber** onto trigger line 3 of the RTSI bus. Then you can make a second call to RTSI\_Conn to access another DIO 6533 device by using parameters **sigCode** = 0, **trigLine** = 3, and **dir** = 0. This call configures the second device RTSI interface to receive a signal from trigger line 3 and drive it onto its REQ1 signal. The total effect of these two calls is that the REQ1 signal on the first DIO 6533 device (master) controls the REQ1 signal on the second DIO 6533 device (slave), thus setting up a master-slave relationship for digital handshaking between the two devices.

A representation of the above example in C would be as such:

```
/* transmit REQ1 on RTSI 3 */
RTSI_Conn (device1, 0, 3, 1);
/* receive RTSI3 into REQ1 */
RTSI_Conn (device2, 0, 3, 0);
```

### Other examples:

Synchronizing the update clocks on two AT-AO-6/10 devices on RTSI 4

```
/* transmit EXTUPD* on RTSI4 */
RTSI_Conn (device1, 2, 4, 1);
/* receive RTSI4 into EXTUPDATE* */
RTSI_Conn (device2, 5, 4, 0);
```

Do not forget to call RTSI\_DisConn or RTSI\_Clear at the end of your program to disconnect signals connected to the RTSI bus.

You can connect RTSI signals between devices that support RTSI\_Conn and devices that support Select\_Signal. In this case, make sure to coordinate which RTSI **trigline** you are using to pass the signals.

# Example

Synchronizing analog input multichannel, hardware timed, buffered acquisitions on E Series devices with handshaked digital I/O operations on DIO-32HS devices (for example, buffered pattern acquisition or generation).

This example routes the AI Scan Start signal from an E Series device (device1) as a master clock, together with REQ1 on a DIO-32HS device (device2) as a slave clock on RTSI5, and clearing RTSI connections at the end of an acquisition or a program. You can also change the **source** parameter in Select\_Signal so that the clock signal comes from a PFI line (for example, for PFI7, use ND\_PFI\_7) on the I/O connector of **device1** instead of the internal AI Scan Start signal.

```
/* transmit AI Scan Start with positive polarity on RTS15 */
Select_Signal(device1, ND_RTSI_5, ND_IN_SCAN_START, ND_LOW_TO_HIGH);
/* receive RTS15 into REQ1 */
RTSI_Conn(device2, 0, 5, 0);
/*... call other functions for data acquisition ...*/
/* disconnect REQ1 from RTS15 */
RTSI_DisConn (device2, 0, 5);
/* disconnect AI Scan Start from RTS15 */
Select_Signal (device1, ND_RTSI_5, ND_NONE, ND_DONT_CARE);
```

# **Example**

Synchronizing handshaked digital I/O operations on DIO-32HS devices (for example, buffered pattern acquisition or generation) with analog output hardware timed, buffered generations on E Series devices.

This example routes the REQ1 on a DIO-32HS device (device1) as a master clock, together with the AO Update clock on an E Series device (device2) as a slave clock on RTSI2, and clearing RTSI connections at the end of an acquisition or a program

```
/* transmit REQ1 on RTSI2 */
RTSI_Conn(device1, 0, 2, 1);
/* receive RTSI2 into AO Update Clock with positive polarity */
Select_Signal(device2, ND_OUT_UPDATE, ND_RTSI_2, ND_LOW_TO_HIGH);
/*... call other functions for data acquisition ...*/
/* disconnect REQ1 from RTSI2 */
RTSI_DisConn (device1, 0, 2);
/* switch back to internal timer */
Select_Signal (device2, ND_OUT_UPDATE, ND_INTERNAL_TIMER,
ND_LOW_TO_HIGH);
```



**Note** For more information on connecting RTSI signals with E Series devices, DAQArb devices, DSA devices, or NI-TIO based devices, refer to the Select\_Signal function.

Observe the following rules when routing signals over the RTSI bus trigger lines:

- You can connect any signal to any trigger line.
- RTSI connections should have only one source signal but can have multiple receiver signals. Connecting two or more source signals causes bus contention over the trigger line.
- You can connect two or more signals on the same device together using a RTSI bus trigger line as long as you follow the preceding rules.

You can disconnect RTSI connections by using either RTSI\_DisConn or RTSI\_Clear.

# RTSI DisConn

## **Format**

status = RTSI\_DisConn (deviceNumber, sigCode, trigLine)

# **Purpose**

Disconnects a device signal from the specified RTSI bus trigger line.

### **Parameters**

## Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |
| sigCode      | i16  | signal code number                |
| trigLine     | i16  | RTSI bus trigger line             |

## **Parameter Discussion**

**sigCode** is the signal code number of the device signal to be disconnected from the RTSI bus trigger line. Signal code numbers for each device type are in the RTSI Bus Trigger Functions section of Chapter 3, Software Overview, of the NI-DAQ User Manual for PC Compatibles.

**trigLine** specifies the RTSI bus trigger line that is to be disconnected from the signal. Range: 0 through 6.

# **Using This Function**

RTSI\_DisConn programs the RTSI bus interface on the specified **deviceNumber** such that NI-DAQ disconnects the signal identified by **sigCode** and the trigger line specified by **trigLine**.



**Note** It takes the same number of RTSI\_DisConn calls to disconnect a connection as it took RTSI\_Conn calls to make the connection in the first place. (See RTSI\_Conn for further explanation.)

# SC\_2040\_Config

### **Format**

status = SC\_2040\_Config (deviceNumber, channel, sc2040gain)

## **Purpose**

Informs NI-DAQ that an SC-2040 Track-and-Hold accessory is attached to the device specified by **deviceNumber** and communicates to NI-DAQ gain settings for one or all channels.

### **Parameters**

## Input

| Name         | Туре | Description                                                                              |
|--------------|------|------------------------------------------------------------------------------------------|
| deviceNumber | i16  | assigned by configuration utility                                                        |
| channel      | i16  | number of SC-2040 channel you want to configure; use –1 to indicate all SC-2040 channels |
| sc2040gain   | i16  | specifies gain you have set using jumpers on the SC-2040                                 |

## **Parameter Discussion**

**channel** allows you to specify an individual channel on the SC-2040 or all SC-2040 channels. Range: -1 for all channels and 0 through 7 for individual channels.

**sc2040gain** allows you to indicate the gain you have selected with your SC-2040 jumpers. Range: 1, 10, 100, 200, 300, 500, 600, 700, 800.

# **Using This Function**

You must use this function before any analog input function that uses the SC-2040.

This function reserves the PFI 7 line PFI 7 line on your E Series device for use by NI-DAQ and the SC-2040. This line is configured for output, and the output is the a signal that indicates when a scan is in progress.



**Caution** Do not try to drive the PFI 7 line after calling this function. If you do, you might damage your SC-2040, your E Series device, and your equipment.

# Example 1

You have selected set the jumper for a gain of 100 for all your SC-2040 channels. You should call SC\_2040\_Config as follows:

```
SC_2040_Config(deviceNumber, -1, 100)
```

# Example 2

You have selected gain set the jumper for a gain of 100 for channels 0, 3, 4, 5, and 6 on your SC-2040, gain 200 for channels 1 and 2, and gain 500 for channel 7. You should call function SC\_2040\_Config several times as follows:

```
SC_2040_Config(deviceNumber, -1, 100)
SC_2040_Config(deviceNumber, 1, 200)
SC_2040_Config(deviceNumber, 2, 200)
SC_2040_Config(deviceNumber, 7, 500)
```

# **SCAN Demux**

#### **Format**

status = SCAN\_Demux (buffer, count, numChans, numMuxBrds)

# **Purpose**

Rearranges, or demultiplexes, data acquired by a SCAN operation into row-major order (that is, each row of the array holding the data corresponds to a scanned channel) for easier access by C applications. SCAN\_Demux does not need to be called by BASIC applications to rearrange two-dimensional arrays because these arrays are accessed in column-major order.

## **Parameters**

## Input

| Name       | Туре | Description                          |
|------------|------|--------------------------------------|
| count      | u32  | number of samples                    |
| numChans   | i16  | number of channels that were scanned |
| numMuxBrds | i16  | number of AMUX-64T devices used      |

# Input/Output

| Name   | Туре  | Description                 |
|--------|-------|-----------------------------|
| buffer | [i16] | conversion samples returned |

## **Parameter Discussion**

**buffer** is an integer array of A/D conversion samples returned by a SCAN operation.

**count** is the integer length of **buffer** (that is, the number of samples contained in **buffer**).

**numChans** is the number of channels that NI-DAQ scanned when the data was created. If you used SCXI to acquire the data, **numChans** should be the total number of channels sampled during one scan. Otherwise, this parameter is the same as the value of **numChans** selected in SCAN\_Setup, Lab\_ISCAN\_Start, SCAN\_Op, or Lab\_ISCAN\_Op.

Range: 1 through 16.

1 through 512 for the E Series devices, except the 6110E and the 6111E. 1 through the physical number of AI channels for PCI-6110E and PCI-6111E (4 or 2). **numMuxBrds** is the number of AMUX-64T devices used during the multiple-channel acquisition. NI-DAQ ignores this parameter for the DAQCard-500/700 and 516, Lab and 1200 Series, and LPM and DSA devices.

Range: 0, 1, 2, or 4.

# **Using This Function**

If your **buffer** was initially declared as a two-dimensional array after SCAN\_Demux rearranges your data, you can access any point acquired from any channel by specifying the channel in the first dimension and the data point in the second dimension. For example, suppose NI-DAQ scanned channels 3 and 5 and **buffer** is zero-based. Then **buffer**[0][9] contains the 10th data point (numbering starts at zero) scanned from channel 3 (the first of the two channels), and **buffer**[1][14] contains the 15th data point acquired from channel 5.

If the number of channels scanned varies each time you run your program, you probably should be using a one-dimensional array to hold the data. You can index this array in the following manner after SCAN\_Demux performs its rearrangement to access any point acquired from any channel (again, suppose that channels 3 and 5 were scanned).

**count** is the total number of data points acquired.

total\_chans is the total number of channels scanned (different from **numChans** if **numMuxBrds** is greater than zero).

points\_per\_chan is then the number of data points acquired from each channel (that is, **count**/total\_chans).

**buffer**[0 \* points\_per\_chan + 9] contains the 10th data point scanned from channel 3.

**buffer**[1 \* points\_per\_chan + 14] contains the 15th data point acquired at channel 5.

# SCAN\_Op

### **Format**

status = SCAN\_Op (deviceNumber, numChans, chans, gains, buffer, count, sampleRate, scanRate)

# **Purpose**

Performs a synchronous, multiple-channel scanned data acquisition operation. SCAN\_Op does not return until NI-DAQ has acquired all the data or an acquisition error has occurred (MIO, AI, and DSA devices only).

## **Parameters**

# Input

| Name         | Туре  | Description                              |
|--------------|-------|------------------------------------------|
| deviceNumber | i16   | assigned by configuration utility        |
| numChans     | i16   | number of channels                       |
| chans        | [i16] | list of channels                         |
| gains        | [i16] | list of gain settings                    |
| count        | u32   | number of samples                        |
| sampleRate   | f64   | desired sample rate in points per second |
| scanRate     | f64   | desired scan rate in scans per second    |

# Input/Output

| Name   | Туре  | Description                 |
|--------|-------|-----------------------------|
| buffer | [i16] | conversion samples returned |

### **Parameter Discussion**

**numChans** is the number of channels listed in the scan sequence.

Range: 1 through 512 for the E Series devices, except 6110E and 6111E.

1 through n for PCI-6110E, PCI-6111E, and DSA devices where n is the number

of physical channels onboard.

**chans** is an integer array of a length not less than **numChans** that contains the channel scan sequence to be used. **chans** can contain any onboard analog input channel number in any order. For onboard analog input channel ranges, see Table B-1, *Valid Analog Input Channel* 

Settings, in Appendix B, Analog Input Channel, Gain Settings, and Voltage Calculation. For example, if **numChans** = 4 and if **chans**[1] = 7, the second channel to be scanned is analog input channel number 7, and NI-DAQ scans four analog input channels.



**Note** The channels contained in the chans array refer to the onboard channel numbers.

If you use one or more external multiplexer devices (AMUX-64Ts), with any MIO or AI device except the MIO-64, the total number of channels scanned equals (4) \* (**numChans**) \* (number of AMUX-64T devices). For example, if you use one AMUX-64T and scan eight onboard channels, the total number of channels scanned equals (4) \* (8) \* (1) = 32.

If you use one or more external multiplexer devices (AMUX-64Ts) with the MIO-64, the total number of channels scanned equals (4) \* (numChans1) \* (num\_mux\_brds) + numChans2, where:

- 4 represents a four-to-one multiplexer.
- **numChans1** is the number of onboard channels (of an MIO or AI connector) scanned. Range: 0 through 7 differential, 0 through 15 single-ended.
- num\_mux\_brds is the number of external multiplexer devices.
- **numChans2** is the number of onboard channels (of an analog connector) scanned. Range: 0 through 23 differential, 0 through 48 single-ended.

If you are using SCXI, you must scan the appropriate analog input channels on the DAQ device that correspond to the SCXI channels you want. You should select the SCXI scan list using SCXI\_SCAN\_Setup before you call this function. Refer to the *NI-DAQ User Manual for PC Compatibles* for more information on SCXI channel assignments.

gains is an integer array of a length not less than **numChans** that contains the gain setting to be used for each channel in the scan sequence selected in **chans**. NI-DAQ applies the gain value contained in **gains**[n] to the channel number contained in **chans**[n] when NI-DAQ scans that channel. This gain setting applies only to the DAQ device; if you use SCXI, you must establish any gain you want at the SCXI module either by setting jumpers on the module or by calling SCXI\_Set\_Gain. Refer to Appendix B, *Analog Input Channel, Gain Settings, and Voltage Calculation*, for valid gain settings. If you use an invalid gain, NI-DAQ returns an error.

**count** is the number of samples to be acquired (that is, the number of A/D conversions to be performed).

```
Range: 3 \text{ through } 2^{32} - 1 \text{ (except the E Series)}.
```

2 through  $2^{24}$  \* (total number of channels scanned) or  $2^{32} - 1$ , whichever is less (E Series and DSA devices). For PCI-611X devices, **count** must be EVEN.

**sampleRate** is the sample rate you want in units of points per second. This is the rate at which NI-DAQ samples channels within a scan sequence.

Range: Roughly 0.00153 pts/s through 1,000,000 pts/s. The maximum rate varies according to the type of device you have.

**scanRate** is the scan rate you want in units of scans per second (scans/s). This is the rate at which NI-DAQ performs scans. NI-DAQ performs a scan each time the function samples all the channels listed in the scan sequence.

Range: 0 and roughly 0.00153 scans/s up to 5,000,000 scans/s. A value of 0 means that

there is no delay between scans and that the effective scanRate is

sample Rate/num Chans.

When **scanRate** is not 0, **scanRate** must allow a minimum delay between the last channel of the scan and the first channel of the next scan. For E Series devices, this delay corresponds exactly to the speed of the board: for example, 1  $\mu$ s for an E-1 board, 2  $\mu$ s for an E-2 board, and so on.



**Note** Simultaneous sampling devices do not use the **sampleRate** parameter. Because these devices use simultaneous sampling of all channels the **scanRate** parameter controls the acquisition rate; therefore, **scanRate** of 0 is not allowed.

**buffer** is an integer array that must have a length not less than **count**. When SCAN\_Op returns with an error code equal to zero, **buffer** contains the acquired data.

# **Using This Function**

SCAN\_Op initiates a synchronous process of acquiring A/D conversion samples and storing them in a buffer. SCAN\_Op does not return control to your application until NI-DAQ acquires all the samples you want (or until an acquisition error occurs). When you use posttrigger mode (with pretrigger mode disabled), the process stores **count** A/D conversions in the buffer and ignores any subsequent conversions.



**Note** If you have selected external start triggering for the data acquisition operation, and you are using an E Series device, you need to apply a trigger to the pin that you selected through the Select\_Signal or DAQ\_Config functions to initiate data acquisition. Be aware that if you do not apply the start trigger, SCAN\_Op does not return control to your application. Otherwise, SCAN\_Op issues a software trigger to initiate the data acquisition operation.

If you have enabled pretrigger mode, the sample counter does not begin counting acquisitions until you apply a signal at the stop trigger input. Until you apply this signal, the acquisition remains in a cyclical mode, continually overwriting old data in the buffer with new data. If you do not apply the stop trigger, SCAN\_Op does not return control to your application. To establish a maximum length of time for SCAN\_Op to execute, use Timeout\_Config.

# SCAN\_Sequence\_Demux

### **Format**

status = SCAN\_Sequence\_Demux (numChans, chanVector, bufferSize, buffer, samplesPerSequence, scanSequenceVector, samplesPerChannelVector)

# **Purpose**

Rearranges the data produced by a multi-rate acquisition so that all the data from each channel is stored in adjacent elements of your buffer.

### **Parameters**

# Input

| Name               | Туре  | Description                              |
|--------------------|-------|------------------------------------------|
| numChans           | i16   | the number of channels                   |
| chanVector         | [i16] | the channel list                         |
| bufferSize         | u32   | the number of samples the buffer holds   |
| samplesPerSequence | i16   | the number of samples in a scan sequence |
| scanSequenceVector | [i16] | contains the scan sequence               |

# Input/Output

| Name   | Туре  | Description                 |
|--------|-------|-----------------------------|
| buffer | [i16] | conversion samples returned |

# Output

| Name                    | Type  | Description                            |
|-------------------------|-------|----------------------------------------|
| samplesPerChannelVector | [u32] | the number of samples for each channel |

# **Parameter Discussion**

**numChans** is the number of entries in the **chanVector** and **samplesPerChannelVector** arrays.

**chanVector** contains the channels sampled in the acquisition that produced the data contained in **buffer**. It might be identical to the channel vector you used in the call to SCAN\_Sequence\_Setup, or it might contain the channels in a different order. SCAN\_Sequence\_Demux will reorder the data in **buffer** such that the data for **chanVector**[0] occurs first, the data for **chanVector**[1] occurs second, and so on.

bufferSize is the number of samples in the buffer.

**buffer** is the array containing the data produced by the multi-rate acquisition. When SCAN\_Sequence\_Demux returns, the data in **buffer** will be rearranged.

**samplesPerSequence** is the number of samples in a scan sequence (obtained from a previous call to SCAN\_Sequence\_Setup) and the size of the **scanSequenceVector** array.

**scanSequenceVector** contains the scan sequence created by NI-DAQ as a result of a previous call to SCAN\_Sequence\_Setup. You obtain a copy of **scanSequenceVector** by calling SCAN\_Sequence\_Retrieve.

**samplesPerChannelVector** contains the number of samples for each channel. The channel listed in entry *i* of **chanVector** will have a number of samples equal to the value of **samplesPerChannelVector**[*i*].

# **Using This Function**

SCAN\_Sequence\_Demux rearranges multirate data so that retrieving the data of a channel is more straightforward. The following example illustrates how to use this function:

The input parameters are as follows:

```
numChans = 3
chanVector = {2, 5, 7}
bufferSize = 14
buffer = {2, 5, 7, 2, 2, 5, 2, 2, 5, 7, 2, 2, 5, 2} where a 2 represents a sample from channel 2, and so on.
samplesPerSequence = 7
scanSequenceVector = {2, 5, 7, 2, 2, 5, 2}
```

The output parameters are as follows:

```
buffer = {2, 2, 2, 2, 2, 2, 2, 5, 5, 5, 5, 7, 7} where a 2 represents a sample from channel 2, and so on. 

samplesPerChannelVector = {8, 4, 2}
```

The data from a channel can be located in the buffer by calculating the index of the first sample and the index of the last sample.

• The data from a channel listed in **chanVect**[0] (channel 2) begins at index 0 and ends at index **samplesPerChannelVector** [0] – 1 (index 7).

- The first sample for the channel listed in **chanVector**[1] (channel5) begins at **samplesPerChannelVector** [0] (index 8) and ends at (**samplesPerChannelVector** [0] + **samplesPerChannelVector** [1]) 1 (index 11).
- The first sample for the channel listed in **chanVector**[2] (channel 7) begins at (**samplesPerChannelVector** [0] + **samplesPerChannelVector** [1]) (index 12) and ends at (**samplesPerChannelVector** [0] + **samplesPerChannelVector** [1] + **samplesPerChannelVector** [2]) 1 (index 13).

#### **Format**

# **Purpose**

Returns the scan sequence created by NI-DAQ as a result of a previous call to SCAN\_Sequence\_Setup.

#### **Parameters**

## Input

| Name               | Type | Description                              |
|--------------------|------|------------------------------------------|
| deviceNumber       | i16  | assigned by configuration utility        |
| samplesPerSequence | i16  | the number of samples in a scan sequence |

Chapter 2

# Output

| Name               | Type  | Description                |
|--------------------|-------|----------------------------|
| scanSequenceVector | [i16] | contains the scan sequence |

## **Parameter Discussion**

**samplesPerSequence** is the number of samples in a scan sequence (obtained from a previous call to SCAN\_Sequence\_Setup) and the size of the **scanSequenceVector** output parameter.

**scanSequenceVector** contains the scan sequence created by NI-DAQ as a result of a previous call to SCAN\_Sequence\_Setup. The scan sequence will not contain the *ghost channel* place holders.

# **Using This Function**

SCAN\_Sequence\_Retrieve is used to obtain the actual scan sequence to program the device. You will need this information to call SCAN\_Sequence\_Demux to rearrange your data or to extract particular channels data from your acquisition buffer without rearranging it. If you use DAQ\_Monitor to extract the data of a channel, you do not need the actual scan sequence.

# SCAN\_Sequence\_Setup

### **Format**

status = SCAN\_Sequence\_Setup (deviceNumber, numChans, chanVector, gainVector, scansPerSequence, samplesPerSequence)

## **Purpose**

Initializes the device for a multirate scanned data acquisition operation. Initialization includes selecting the channels to be scanned, assigning gains to these channels and assigning different sampling rates to each channel by dividing down the base scan rate.

### **Parameters**

## Input

| Name                  | Туре  | Description                                                   |
|-----------------------|-------|---------------------------------------------------------------|
| deviceNumber          | i16   | assigned by configuration utility                             |
| numChans              | i16   | number of channels                                            |
| chanVector            | [i16] | channel scan sequence                                         |
| gainVector            | [i16] | gain setting to be used for each channel in <b>chanVector</b> |
| scanRateDivisorVector | [i16] | rate divisor for each channel                                 |

# **Output**

| Name               | Type | Description                              |
|--------------------|------|------------------------------------------|
| scansPerSequence   | i16  | the number of scans in a scan sequence   |
| samplesPerSequence | i16  | the number of samples in a scan sequence |

## **Parameter Discussion**

**numChans** is the number of entries in the three input vectors. All three input vectors must have the same number of entries.

**chanVector** contains the onboard channels that will be scanned. A channel cannot be listed more the once. Refer to Appendix B, *Analog Input Channel, Gain Settings, and Voltage Calculation*, for valid channel settings.

**gainVector** contains the gain settings to be used for each channel in **chanVector**. The channel listed in entry i of **chanVector** will list the gain in entry i of **gainVector**.

**scanRateDivisorVector** contains the scan rate divisors to be used for each channel. The sample rate for a channel equals the base scan rate (that is, the scan rate specified when SCAN\_Start is called) divided by the scan rate divisor for that channel. The channel listed in entry *i* of **chanVector** will list the scan rate divisor in entry *i* of **scanRateDivisorVector**.

**scansPerSequence** is an output parameter that contains the total number of scans in the scan sequence created by NI-DAQ from your **chanVector** and **scanRateDivisorVector** including any scans that consist entirely of *ghost channels*, or place holders.

**samplesPerSequence** is an output parameter that contains the total number of samples in the scan sequence excluding any ghost channels. The total size of a scan sequence including ghost channels is limited by the size of the memory on your device used to hold this information. Currently, this limit is 512 entries. Because **samplesPerSequence** excludes ghost channels, an error might result even if **samplesPerSequence** is less than 512.

# **Using This Function**

The following example shows how to use SCAN\_Sequence\_Setup:

```
\begin{aligned} & \textbf{numChans} = 3 \\ & \textbf{chanVector} = \{2, 5, 7\} \\ & \textbf{gainVector} = \{1, 1, 1\} \\ & \textbf{scanRateDivisorVector} = \{1, 2, 4\} \end{aligned}
```

The scan rate divisor for channel 2 is 1 so it is sampled at the base scan rate. The scan rate divisor for channel 5 is 2 so it is sampled at a rate equal to the base scan rate divided by 2. Likewise, the scan rate divisor for channel 7 is 4 so it is sampled at a rate equal to the base scan rate divided by 4.

The scan sequence created by NI-DAQ looks like this:

```
scan number: 1, 2, 3, 4
channels sampled: 2, 5, 7, 2, 2, 5, 2
scansPerSequence = 4
samplesPerSequence = 7
```

If your base scan rate is 1,000 scans/s, channel 2 is sampled at 1,000 S/s, channel 5 is sampled at 500 S/s, and channel 7 is sampled at 250 S/s.

**scansPerSequence** and **samplesPerSequence** are used to calculate the size of your acquisition buffer. Your buffer size must be an integer multiple of **samplesPerSequence**. Use **scansPerSequence** to size your buffer to hold some unit of time's worth of data. For example,

to figure out the size of a buffer in units of samples and to hold *N* seconds of data, use the following formula:

$$bufferSize = N * (scanRate / scansPerSequence) * samplesPerSequence$$

If **scansPerSequence** does not divide evenly into *scanRate*, the *bufferSize* returned by the above formula has to be rounded up so that it is a multiple of the **samplesPerSequence**.

In this example, your buffer size must be a multiple of 7. The number of samples your buffer must hold to contain 5 s of data at a base scan rate of 1,000 scans/s is:

$$5 * (1,000 / 4) * 7 = 8,750 s$$

### Rules for this Function

You must observe the following rules:

- Interval scanning must be used.
- A channel can be listed only once in the channel vector.
- SCXI cannot be used.
- The AMUX-64T device cannot be used.
- Your acquisition cannot be pretriggered.
- The size of your buffer (the value of the count parameter to SCAN\_Start) must be a multiple of **samplesPerSequence.**

# SCAN\_Setup

#### **Format**

status = SCAN\_Setup (deviceNumber, numChans, chanVector, gainVector)

## **Purpose**

Initializes circuitry for a scanned data acquisition operation. Initialization includes storing a table of the channel sequence and gain setting for each channel to be digitized (MIO and AI devices only).

### **Parameters**

## Input

| Name         | Туре  | Description                                            |
|--------------|-------|--------------------------------------------------------|
| deviceNumber | i16   | assigned by configuration utility                      |
| numChans     | i16   | number of channels                                     |
| chanVector   | [i16] | channel scan sequence                                  |
| gainVector   | [i16] | gain setting to be used for each channel in chanVector |

## **Parameter Discussion**

**numChans** is the number of channels in the **chanVector**.

Range: 1 through 512 for the E Series devices.

1 through n for PCI-6110E, PCI-6111E, and DSA devices, where n is the number

of physical channels onboard.

1 through 256 when configuring scan for AI\_Read\_Scan or AI\_VRead\_Scan.

**chanVector** is an integer array of length **numChans** that contains the onboard channel scan sequence to be used. **chanVector** can contain any analog input channel number in any order. For the channel number range, refer to Table B-1, *Valid Analog Input Channel Settings*, in Appendix B, *Analog Input Channel, Gain Settings, and Voltage Calculation*. For example, if **numChans** = 4 and if **chanVector**[1] = 7, the second channel to be scanned is analog input channel 7, and four analog input channels are scanned.



**Note** The channels listed in the scan sequence refer to the onboard channel numbers.

If you use one or more external multiplexer devices (AMUX-64Ts) with any MIO or AI device except the MIO-64, the total number of channels scanned equals (4) \* (**numChans**) \* (number of AMUX-64T devices). For example, if you use one AMUX-64T and scan eight onboard channels, the total number of channels scanned equals (4) \* (8) \* (1) = 32.

If you use one or more external multiplexer devices (AMUX-64Ts) with the MIO-64, the total number of channels scanned equals (4) \* (numChans1) \* (num\_mux\_brds) + numChans2, where:

- 4 represents four-to-one multiplexer.
- numChans1 is the number of onboard channels (of an MIO or AI connector) scanned.
- Range: 0 through 7 differential, 0 through 15 single-ended.
- num\_mux\_brds is the number of external multiplexer devices.
- **numChans2** is the number of onboard channels (of an analog connector, the second connector) scanned.

Range: 0 through 23 differential, 0 through 48 single-ended.

If you are using SCXI, you must scan the analog input channels on the DAQ device that corresponds to the SCXI channels you want. You should select the SCXI scan list using SCXI\_SCAN\_Setup before you call this function. Refer to the NI-DAQ User Manual for PC Compatibles for more information on SCXI channel assignments.

gainVector is an integer array of length numChans that contains the gain setting to be used for each channel specified in chanVector. This gain setting applies only to the DAQ device; if you use SCXI, you must establish any gain you want at the SCXI module either by setting jumpers on the module or by calling SCXI\_Set\_Gain. Refer to Appendix B, Analog Input Channel, Gain Settings, and Voltage Calculation, for valid gain settings.

For example, if **gainVector**[5] = 10, when NI-DAQ scans the sixth channel, the function sets the gain circuitry to a gain of 10. Notice also that **gainVector**[i] corresponds to **chanVector**[i]. If **gainVector**[2] = 100 and **chanVector**[2] = 3, the third channel NI-DAQ scans is analog input channel 3, and the function sets its gain to 100.



**Note** If you need to supply a gain of 0.5, use the value -1.

# **Using This Function**

SCAN\_Setup stores **numChans**, **chanVector**, and **gainVector** in the Mux-Gain Memory table on the device. The function uses this memory table during scanning operations (SCAN\_Start) to automatically sequence through an arbitrary set of analog input channels and to allow gains to automatically change during scanning.

You need to call SCAN\_Setup to set up a scan sequence for scanned operations; thereafter, you only need to call the function when you want a scan sequence. If you call DAQ\_Start or AI\_Read, NI-DAQ modifies the Mux-Gain Memory table on the device; therefore, you should use SCAN\_Setup again after NI-DAQ modifies these calls to reinitialize the scan sequence.

# **SCAN Start**

### **Format**

status = SCAN\_Start (deviceNumber, buffer, count, sampTimebase, sampInterval, scanTimebase, scanInterval)

# **Purpose**

Initiates a multiple-channel scanned data acquisition operation, with or without interval scanning, and stores its input in an array (MIO, AI, and DSA devices only).

### **Parameters**

## Input

| Name         | Туре | Description                                     |
|--------------|------|-------------------------------------------------|
| deviceNumber | i16  | assigned by configuration utility               |
| count        | u32  | number of samples                               |
| sampTimebase | i16  | resolution used for the sample-interval counter |
| sampInterval | u16  | length of the sample interval                   |
| scanTimebase | i16  | resolution for the scan-interval counter        |
| scanInterval | u16  | length of the scan interval                     |

# Input/Output

| Name   | Type  | Description                    |
|--------|-------|--------------------------------|
| buffer | [i16] | used to hold acquired readings |

### Parameter Discussion

**buffer** is an integer array. **buffer** must have a length equal to or greater than **count**.



**Note** For DSA devices, buffer should be an array of i32. These devices return the data in a 32-bit format in which the data bits are in the most significant bits.

**count** is the number of samples to be acquired (that is, the number of A/D conversions to be performed). For double-buffered acquisitions, **count** specifies the size of the buffer, and **count** must be an even number.

Range:  $3 \text{ through } 2^{32} - 1 \text{ (except the E Series)}.$ 

2 through  $2^{24}$  \* (total number of channels scanned) or  $2^{32} - 1$ , whichever is less for E Series and DSA devices. For PCI-611X devices, **count** must be EVEN.

**count** must be an integer multiple of the total number of channels scanned. **count** refers to the *total* number of A/D conversions to be performed; therefore, the number of samples acquired from each channel is equal to **count** divided by the total number of channels scanned. This number is also the total number of scans. For the E Series devices, the total number of scans must be at least 2. If you do not use external multiplexer (AMUX-64T) devices, the total number of channels scanned is equal to the value of **numChans** (see Scan\_Setup).

If you use one or more external multiplexer devices with any MIO or AI device except the MIO-64, the total number of channels scanned equals (4) \* (**numChans**) \* (number of AMUX-64T devices). For example, if you use one AMUX-64T and scan eight onboard channels, the total number of channels scanned equals (4) \* (8) \* (1) = 32.

If you use one or more external multiplexer devices (AMUX-64Ts) with the MIO-64, the total number of channels scanned equals (4) \* (numChans1) \* (numMaxBrds) + numChans2, where:

- 4 represents a four-to-one multiplexer.
- **numChans1** is the number of onboard channels (of an MIO or AI connector, the first connector) scanned.

Range: 0 through 7 differential, 0 through 15 single-ended.

- num\_mux\_brds is the number of external multiplexer devices.
- numChans2 is the number of onboard channels (of an analog connector, the second connector) scanned.

Range: 0 through 23 differential, 0 through 48 single-ended.

If you use SCXI, the total number of channels scanned is the total number of channels specified in the SCXI\_SCAN\_Setup call.

**sampTimebase** selects the clock frequency that indicates the timebase, or resolution, to be used for the sample-interval counter. The sample-interval counter controls the time that elapses between acquisition of samples within a scan sequence.

**sampTimebase** has the following possible values:

- -3: 20 MHz clock used as a timebase (50 ns resolution) (E Series only).
- −1: 5 MHz clock used as timebase (200 ns resolution).

- 0: External clock used as timebase (Connect your own timebase frequency to the internal scan-interval counter via the default PFI8 input for the E Series devices).
- 1: 1 MHz clock used as timebase (1 µs resolution).
- 2: 100 kHz clock used as timebase (10 µs resolution).
- 3: 10 kHz clock used as timebase (100 µs resolution).
- 4: 1 kHz clock used as timebase (1 ms resolution).
- 5: 100 Hz clock used as timebase (10 ms resolution).

On E Series devices, if you use this function with **sampleTimebase** set to 0 must call the Select\_Signal function with **signal** set to ND\_IN\_CHANNEL\_CLOCK\_TIMEBASE and **source** set to a value other than ND\_INTERNAL\_20\_MHZ and ND\_INTERNAL\_100\_KHZ before calling SCAN\_Start with **sampleTimebase** set to 0; otherwise, SCAN\_Start selects low-to-high transitions on the PFI8 I/O connector pin as your external sample timebase.

If sample-interval timing is to be externally controlled (**extConv** = 1 or 3, see DAQ\_Config), NI-DAQ ignores the **sampTimebase** parameter, which can be any value.

On DSA devices, **sampTimebase** is ignored. Use DAQ\_Set\_Clock to set the can rate.

**sampInterval** indicates the length of the sample interval (that is, the amount of time to elapse between each A/D conversion within a scan sequence).

Range: 2 through 65,535.

The sample interval is a function of the timebase resolution. The actual sample interval in seconds is determined by the following formula:

#### **sampInterval** \* (sample timebase resolution)

where the sample timebase resolution equals one of the values of **sampTimebase** as specified above. For example, if **sampInterval** = 25 and **sampTimebase** = 2, the actual sample interval is  $25 * 10 \mu s = 250 \mu s$ . The time to complete one scan sequence in seconds is (the actual sample interval) \* (number of channels scanned). If the sample interval is to be externally controlled, the **sampInterval** parameter is ignored and can be any value.

On DSA devices, sampInterval is ignored. Use DAQ\_Set\_Clock to set the scan rate.

**scanTimebase** selects the clock frequency that indicates the timebase, or resolution, to be used for the scan-interval counter. The scan-interval counter controls the time that elapses between scan sequences. **scanTimebase** has the following possible values:

- -3: 20 MHz clock used as a timebase (50 ns resolution) (E Series only).
- −1: 5 MHz clock used as timebase (200 ns resolution).
- 0: External clock used as timebase (Connect your own timebase frequency to the internal scan-interval counter via the default PFI8 input for the E Series devices).
- 1: 1 MHz clock used as timebase (1 µs resolution).
- 2: 100 kHz clock used as timebase (10 µs resolution).

- 3: 10 kHz clock used as timebase (100 µs resolution).
- 4: 1 kHz clock used as timebase (1 ms resolution).
- 5: 100 Hz clock used as timebase (10 ms resolution).

On E Series devices, if you use this function with **scanTimebase** set to 0, you must call the function Select\_Signal with **signal** set to ND\_IN\_SCAN\_CLOCK\_TIMEBASE and **source** set to a value other than ND\_INTERNAL\_20\_MHZ and ND\_INTERNAL\_100\_KHZ before calling SCAN\_Start with **scanTimebase** set to 0; otherwise, SCAN\_Start selects low-to-high transitions on the PFI8 I/O connector pin as your external scan timebase.

On DSA devices, scanTimebase is ignored. Use DAQ\_Set\_Clock to set the scan rate.

**scanInterval** indicates the length of the scan interval (that is, the amount of time that elapses between the initiation of each scan sequence). NI-DAQ scans all channels in the scan sequence at the beginning of each scan interval.

Range: 0 or 2 through 65,535.

On DSA devices, scanInterval is ignored. Use DAQ\_Set\_Clock to set the scan rate.

If **scanInterval** equals 0, the time that elapses between A/D conversions and the time that elapses between scan sequences are both equal to the sample interval. That is, as soon as the scan sequence has completed, NI-DAQ restarts one sample interval later. Another advantage of setting **scanInterval** to 0 is that this frees the scan-interval counter (counter 2) for other operations such as waveform generation or general-purpose counting (non-E Series devices only).

The scan interval is a function of the scan timebase resolution. The actual scan interval in seconds is determined by the following formula:

**scanInterval** \* (scan timebase resolution)

where the scan timebase resolution is equal to one of the values of **scanTimebase** as indicated above. For example, if **scanInterval** = 100 and **scanTimebase** = 2, the scan interval is  $100 * 10 \,\mu\text{s} = 1 \,\text{ms}$ . This number must be greater than or equal to the sum of the total sample interval + 2  $\mu$ s for most devices. If the scan interval is to be controlled by pulses applied to the OUT2 signal, NI-DAQ ignores this parameter (**extConv** = 2 or 3, see DAQ\_Config).



**Note** Simultaneous sampling devices ignore parameters for sampTimebase and sampInterval. These devices sample all channels simultaneously. The acquisition rate is controlled by scanTimebase and scanInterval; therefore, a scanInterval value of 0 is not allowed.

## **Using This Function**

SCAN\_Start initializes the Mux-Gain Memory table to point to the start of the scan sequence as specified by SCAN\_Setup. If you did not specify external sample-interval timing by the DAQ\_Config call, NI-DAQ sets the sample-interval counter to the specified **sampInterval** and **sampTimebase**, sets the scan-interval counter to the specified **scanInterval** and **scanTimebase**, and sets up the sample counter to count the number of samples acquired and to stop the data acquisition process when the number of samples acquired equals **count**. If you have specified external sample-interval timing, the data acquisition circuitry relies on pulses received on the EXTCONV\* input to initiate individual A/D conversions. In this case, NI-DAQ scans the channels repeatedly as fast as you apply the external conversion pulses.

SCAN\_Start initializes a background data acquisition process to handle storing of A/D conversion samples into the buffer as NI-DAQ acquires them. When you use posttrigger mode (with pretrigger mode disabled), the process stores up to **count** A/D conversion samples into the buffer and ignores any subsequent conversions. NI-DAQ stores the acquired samples into the buffer with the channel scan sequence data interleaved; that is, the first sample is the conversion from the first channel, the second sample is the conversion from the second channel, and so on.

You cannot make the second call to SCAN\_Start without terminating this background data acquisition process. If a call to DAQ\_Check returns **daqStopped** = 1, the samples are available and NI-DAQ terminates the process. In addition, a call to DAQ\_Clear terminates the background data acquisition process. Notice that if a call to DAQ\_Check returns an error code of **overFlowError** or **overRunError**, or **daqStopped** = 1, the process is automatically terminated and there is no need to call DAQ\_Clear.

If you enable pretrigger mode, SCAN\_Start initiates a cyclical acquisition that continually fills the buffer with data, wrapping around to the start of the buffer once NI-DAQ has written to the entire buffer. When you apply the signal at the stop trigger input, SCAN\_Start acquires an additional number of samples specified by the **ptsAfterStoptrig** parameter in DAQ\_StopTrigger\_Config and then terminates. Be aware that a scan sequence always completes. Therefore, NI-DAQ always obtains the most recent data point from the final channel in the scan sequence. When you enable pretrigger mode, the length of the buffer, which is greater than or equal to **count**, should be an integral multiple of **numChans**. If you observe this rule, a sample from the first channel in the scan sequence always resides at **index** = 0 in the buffer.

If you select external start triggering of the data acquisition operation, a transition on the line selected for the trigger initiates the data acquisition operation after the SCAN\_Start call is complete. Otherwise, SCAN\_Start issues a software trigger to initiate the data acquisition operation before returning.



**Note** If your application calls DAQ\_Start or SCAN\_Start, always ensure that you call DAQ\_Clear before your application terminates and returns control to the operating system. Unless you make this call (either directly, or indirectly through DAQ\_Check or DAQ\_DB\_Transfer), unpredictable behavior can result.

You must use the SCAN\_Setup and SCAN\_Start functions as a pair. Making a single call to SCAN\_Setup with multiple calls to SCAN\_Start fails and returns error **noSetupError**.

If you have an SC-2040 connected to your DAQ device, NI-DAQ ignores the **sampTimebase** and **sampInterval** parameters. NI-DAQ automatically supplies these parameters to optimally match your hardware.

If you select sampTimebase = 0 and scanTimebase = 0, you must use the same source for both. On E Series devices, if you use the Select\_Signal function to specify the source of an external sample and external scan timebase, you must specify the same source for both timebases.

# SCAN to Disk

### **Format**

status = SCAN\_to\_Disk (deviceNumber, numChans, chans, gains, filename, count, sampleRate, scanRate, concat)

# **Purpose**

Performs a synchronous, multiple-channel scanned data acquisition operation and simultaneously saves the acquired data in a disk file. SCAN\_to\_Disk does not return until all the data has been acquired and saved or an acquisition error has occurred (MIO and AI devices only).

### **Parameters**

### Input

| Name         | Туре  | Description                              |
|--------------|-------|------------------------------------------|
| deviceNumber | i16   | assigned by configuration utility        |
| numChans     | i16   | number of channels                       |
| chans        | [i16] | list of channels                         |
| gains        | [i16] | list of gain settings                    |
| filename     | STR   | name of the data file                    |
| count        | u32   | number of samples                        |
| sampleRate   | f64   | desired sample rate in points per second |
| scanRate     | f64   | desired scan rate in scans per second    |
| concat       | i16   | enables concatenation of existing file   |

### **Parameter Discussion**

numChans is the number of channels listed in chansArray.

Range: 1 through 512 for the E Series devices.

1 through *n* for PCI-6110E, PCI-6111E, and DSA devices, where *n* is the number

of physical channels onboard.

**chans** is an integer array of a length not less than **numChans** that contains the onboard channel scan sequence to be used. **chans** can contain any analog input channel number in any order. For channel number ranges, refer to Table B-1, *Valid Analog Input Channel Settings*,

in Appendix B, *Analog Input Channel, Gain Settings, and Voltage Calculation*. For example, if **numChans** = 4 and if **chans**[1] = 7, the second channel to be scanned is analog input channel 7, and NI-DAQ scans four analog input channels.



**Note** The channels contained in the chans array refer to the onboard channel numbers.

If you use one or more external multiplexer devices (AMUX-64Ts), with any MIO or AI device except the MIO-64, the total number of channels scanned equals (4) \* (**numChans**) \* (number of AMUX-64T devices). For example, if you use one AMUX-64T and scan eight onboard channels, the total number of channels scanned equals (4) \* (8) \* (1) = 32.

If you use one or more external multiplexer devices (AMUX-64Ts) with the MIO-64, the total number of channels scanned equals (4) \* (numChans1) \* (num\_mux\_brds) + numChans2, where:

- 4 represents a four-to-one multiplexer.
- numChans1 is the number of onboard channels (of an MIO or AI connector) scanned.
   Range: 0 through 7 differential, 0 through 15 single-ended.
- num\_mux\_brds is the number of external multiplexer devices.
- **numChans2** is the number of onboard channels (of an analog connector) scanned. Range: 0 through 23 differential, 0 through 48 single-ended.

If you use SCXI, you must scan the analog input channels on the DAQ device that corresponds to the SCXI channels you want. You should select the SCXI scan list using SCXI\_SCAN\_Setup before you call this function. Refer to the *NI-DAQ User Manual for PC Compatibles* for more information on SCXI channel assignments.

gains is an integer array of a length not less than **numChans** that contains the gain setting to be used for each channel in the scan sequence selected in **chans**. NI-DAQ applies the gain value contained in **gains**[n] to the channel number contained in **chans**[n] when the function scans that channel. This gain setting applies only to the DAQ device; if you use SCXI, you must establish any gain you want at the SCXI module either by setting jumpers on the module or by calling SCXI\_Set\_Gain. Refer to Appendix B, *Analog Input Channel, Gain Settings, and Voltage Calculation*, for valid gain settings. If you use an invalid gain, NI-DAQ returns an error.

**count** is the number of samples to be acquired (that is, the number of A/D conversions to be performed). The length of your data file should be exactly twice the value of **count**. If you have previously enabled pretrigger mode (by a call to DAQ\_StopTrigger\_Config), NI-DAQ ignores the **count** parameter.

Range:  $3 \text{ through } 2^{32} - 1 \text{ (except the E Series)}.$ 

2 through 2<sup>24</sup> (E Series). For PCI-611X devices, count must be EVEN.

**sampleRate** is the sample rate you want in units of points per second. This is the rate at which channels are sampled within a scan sequence.

Range: Roughly 0.00153 pts/s through 1,000,000 pts/s.

**scanRate** is the scan rate you want in units of scans per second. This is the rate at which NI-DAQ performs scans. NI-DAQ performs a scan each time the function samples all the channels listed in the scan sequence.

Range:

0 and roughly 0.00153 scans/s through 5,000,000 scans/s. A value of 0 means that there is no delay between scans and that the effective **scanRate** is **sampleRate/numChans**.

**concat** enables concatenation of data to an existing file. Regardless of the value of **concat**, if the file does not exist, NI-DAQ creates the file.

- 0: Overwrite file if it exists.
- 1: Concatenate new data to an existing file.

## **Using This Function**

SCAN\_to\_Disk initiates a synchronous process of acquiring A/D conversion samples and storing them in a disk file. Data is written to disk in a 16-bit binary format, with the lower byte first (little endian). The maximum rate varies according to the type of device you have and the speed and degree of fragmentation of your disk storage device. SCAN\_to\_Disk does not return control to your application until NI-DAQ acquires and saves all the samples you want (or until an acquisition error occurs). When you use posttrigger mode (with pretrigger mode disabled), the process stores **count** A/D conversions in the file and ignores any subsequent conversions.



**Note** If you have selected external start triggering of the data acquisition operation, a transition of an external signal initiates the data acquisition operation. If you are using all E Series devices, see the Select\_Signal function for information about the external timing signals. Be aware that if you do not apply the start trigger, SCAN\_to\_Disk does not return control to your application. Otherwise, this function issues a software trigger to initiate the data acquisition operation.

If you have enabled pretrigger mode, the sample counter does not begin counting acquisitions until you apply a signal at the stop trigger input. Until you apply this signal, the acquisition continues to write data into the disk file. NI-DAQ ignores the value of the **count** parameter when you enable pretrigger mode. If you do not apply the stop trigger, SCAN\_to\_Disk eventually returns control to your application because you eventually run out of disk space.

In any case, you can use Timeout\_Config to establish a maximum length of time for SCAN to Disk to execute.



**Note** Simultaneous sampling devices do not use the sampleRate parameter. Because these devices use simultaneous sampling of all channels the scanRate parameter controls the acquisition rate; therefore, a scanRate of 0 is not allowed.

Chapter 2

# **SCXI AO Write**

### **Format**

status = SCXI\_AO\_Write (SCXIchassisID, moduleSlot, channel, opCode, rangeCode, voltCurrentData, binaryData, binaryWritten)

## **Purpose**

Sets the DAC channel on the SCXI-1124 module to the specified voltage or current output value. You can also use this function to write a binary value directly to the DAC channel, or to translate a voltage or current value to the corresponding binary value.

### **Parameters**

## Input

| Name            | Туре | Description                                      |
|-----------------|------|--------------------------------------------------|
| SCXIchassisID   | i16  | chassis ID number                                |
| moduleSlot      | i16  | module slot number                               |
| channel         | i16  | the DAC channel of the module to write to        |
| opCode          | i16  | type of data                                     |
| rangeCode       | i16  | the voltage/current range to be used             |
| voltCurrentData | f64  | voltage or current to be produced at the channel |
| binaryData      | i16  | binary value to be written to the DAC            |

# Output

| Name          | Туре | Description                            |
|---------------|------|----------------------------------------|
| binaryWritten | i16  | actual binary value written to the DAC |

### Parameter Discussion

**channel** is the number of the analog output channels on the module.

Range: 0 to 5.

**opCode** specifies the type of data to write to the DAC channel. You can also use **opCode** to tell SCXI\_AO\_Write to translate a voltage or current value and return the corresponding binary pattern in **binaryWritten** without writing anything to the module.

0: Write a voltage or current to **channel**.

- 1: Write a binary value directly to **channel**.
- 2: Translate a voltage or current value to binary, return in **binaryWritten**.

rangeCode is the voltage or current range to be used for the analog output channel.

- 0: 0 to 1 V.
- 1: 0 to 5 V.
- 2: 0 to 10 V.
- 3: -1 to 1 V.
- 4: -5 to 5 V.
- 5: -10 to 10 V.
- 6: 0 to 20 mA.

**voltCurrentData** is the voltage or current you want to produce at the DAC channel output. If **opCode** = 1, NI-DAQ ignores this parameter. If **opCode** = 2, this is the voltage or current value you want to translate to binary. If the value is out of range for the given **rangeCode**, SCXI\_AO\_Write returns an error.

**binaryData** is the binary value you want to write directly to the DAC. If **opCode** is not 1, NI-DAQ ignores this parameter.

Range: 0 to 4,095.

**binaryWritten** returns the actual binary value that NI-DAQ wrote to the DAC. SCXI\_AO\_Write uses a formula, given later in this section, using calibration constants that are stored on the module EEPROM to calculate the appropriate binary value that produces the given voltage or current. If **opCode** = 1, **binaryWritten** is equal to **binaryData**. If **opCode** = 2, SCXI\_AO\_Write calculates the binary value but does not write anything to the module.

# **Using This Function**

SCXI\_AO\_Write uses the following equation to translate voltage or current values to binary:

$$B_w = B_1 + (V_w - V_1) * (B_h - B_1) / (V_h - V_1)$$

where

 $B_1$  = binary value that produces the low value of the range

 $B_h$  = binary value that produces the high value of the range

 $V_h$  = high value of the range

 $V_1 = low value of the range$ 

 $V_w$  = desired voltage or current

 $B_w$  = the binary value which generates  $V_w$ 

NI-DAQ loads a table of calibration constants from the SCXI-1124 EEPROM load area. The calibration table contains values for  $B_l$  and  $B_h$  for each channel and range.

The SCXI-1124 is shipped with a set of factory calibration constants in the factory-set EEPROM area and a copy of the factory constants in the EEPROM load area. You can recalibrate your module and store your own calibration constants in the EEPROM load area using the SCXI\_Cal\_Constants function. Refer to the SCXI\_Cal\_Constants function description for calibration procedures and information about the module EEPROM.

If you want to write a binary value directly to the output channel, use **opCode** = 1. SCXI\_AO\_Write will not use the calibration constants or the conversion formula; it writes your **binaryData** value to the DAC.

# **SCXI** Cal Constants

### **Format**

status = SCXI\_Cal\_Constants (SCXIchassisID, moduleSlot, channel, opCode, calibrationArea, rangeCode, SCXIgain, DAQboard, DAQchan, DAQgain, TBgain, scaled1, binary1, scaled2, binary2, calConst1, calConst2)

## **Purpose**

Calculates calibration constants for the given channel and range or gain using measured input value/binary pairs. You can use this with any SCXI analog input or analog output module. The constants can be stored and retrieved from NI-DAQ memory or the module EEPROM (if your module has an EEPROM). The driver uses the calibration constants to more accurately scale analog input data when you use the SCXI\_Scale function and output data when you use SCXI\_AO\_Write.

### **Parameters**

## Input

| Name            | Type | Description                                                       |
|-----------------|------|-------------------------------------------------------------------|
| SCXIchassisID   | i16  | SCXI chassis ID number                                            |
| moduleSlot      | i16  | SCXI module slot number                                           |
| channel         | i16  | analog input or output channel number                             |
| opCode          | i16  | operation to perform with the calibration constants               |
| calibrationArea | i16  | where to store or retrieve constants                              |
| rangeCode       | i16  | the voltage/current range for the analog output channel           |
| SCXIgain        | f64  | gain setting for the SCXI analog input channel                    |
| DAQboard        | i16  | device number of DAQ device used to acquire binary1 and binary2   |
| DAQchan         | i16  | DAQ device channel number used when acquiring binary1 and binary2 |
| DAQgain         | i16  | DAQ device gain code used when acquiring binary1 and binary2      |

| Name    | Туре | Description                                        |
|---------|------|----------------------------------------------------|
| TBgain  | f64  | SCXI terminal block gain, if any                   |
| scaled1 | f64  | voltage/current/frequency corresponding to binary1 |
| binary1 | f64  | binary value corresponding to scaled1              |
| scaled2 | f64  | voltage/current/frequency corresponding to binary2 |
| binary2 | f64  | binary value corresponding to scaled2              |

## Output

| Name      | Type | Description                 |
|-----------|------|-----------------------------|
| calConst1 | *f64 | return calibration constant |
| calConst2 | *f64 | return calibration constant |

### **Parameter Discussion**

**channel** is the number of the channel on the module.

Range: 0 to n-1, where n is the number of channels available on the module.

- -1: All channels on the module. For instance, the SCXI-1100, SCXI-1101, and SCXI-1122 modules have one amplifier for all channels, so calibration constants for those modules apply to all the module channels.
- -2: The voltage (calConst2) and current excitation channels (calConst1) on the module. This is valid for the SCXI-1122 only, and only when opCode = 0.

**opCode** specifies the type of calibration operation to be performed.

- 0: Retrieve calibration constants for the given channel and range or gain from calibrationArea and return them in calConst1 and calConst2.
- 1: Perform a one-point offset calibration calculation using (**scaled1**, **binary1**) for the given channel and gain and write calibration constants to **calibrationArea** (analog input modules only).
- 2: Perform a two-point calibration calculation using (**scaled1**, **binary1**) and (**scaled2**, **binary2**) for the given channel and range or gain and write calibration constants to **calibrationArea**.
- 3: Write the calibration constants passed in **calConst1** and **calConst2** to **calibrationArea** for the given channel and range or gain.
- 4: Copy the entire calibration table in **calibrationArea** to the module EEPROM default load area so that it will be loaded automatically into NI-DAQ memory during subsequent application runs (SCXI-1101, SCXI-1102, SCXI-1104,

- SCXI-1122, SCXI-1124, SCXI-1126, SCXI-1141, SCXI-1142, and SCXI-1143 only).
- 5: Copy the entire calibration table in **calibrationArea** to driver memory so NI-DAQ can use the table in subsequent scaling operations in the current NI-DAQ session (SCXI-1122, SCXI-1124, SCXI-1126, SCXI-1141, SCXI-1142, and SCXI-1143 only).

**calibrationArea** is the location NI-DAQ uses for the calibration constants. Read the following *Using This Function* section for an explanation of the calibration table stored in NI-DAQ memory and the SCXI-1101, SCXI-1102, SCXI-1104, SCXI-1122, SCXI-1124, SCXI-1126, SCXI-1141, SCXI-1142, and SCXI-1143 EEPROM organization.

- 0: NI-DAQ memory. NI-DAQ maintains a calibration table in memory for use in scaling operations for the module.
- 1: Default EEPROM load area. NI-DAQ also updates the calibration table in memory when you write to the default load area (SCXI-1101, SCXI-1102, SCXI-1104, SCXI-1122, SCXI-1124, SCXI-1126, SCXI-1141, SCXI-1142, and SCXI-1143 only)
- 2: Factory-set EEPROM area. You cannot write to this area, but you can read or copy from it (SCXI-1101, SCXI-1102, SCXI-1104, SCXI-1122, SCXI-1124, SCXI-1126, SCXI-1141, SCXI-1142, and SCXI-1143 only).
- 3: User EEPROM area (SCXI-1101, SCXI-1102, SCXI-1104, SCXI-1122, SCXI-1124, SCXI-1126, SCXI-1141, SCXI-1142, and SCXI-1143 only).

**rangeCode** is the voltage or current range of the analog output channel. NI-DAQ only uses this parameter for analog output modules.

- 0: 0 to 1 V.
- 1: 0 to 5 V.
- 2: 0 to 10 V.
- 3: -1 to 1 V.
- 4: -5 to 5 V.
- 5: -10 to 10 V.
- 6: 0 to 20 mA.

**SCXIgain** is the SCXI module or channel gain/range setting. NI-DAQ only uses this parameter for analog input modules. Valid **SCXIgain** values depend on the module type:

```
SCXI-1100: 1, 2, 5, 10, 20, 50, 100, 200, 500, 1,000, 2,000
```

SCXI-1101: 1 SCXI-1102: 1, 100 SCXI-1104: 0.1

SCXI-1120: 1, 2, 5, 10, 20, 50, 100, 200, 250, 500, 1,000, 2,000

SCXI-1120D: 0.5, 1, 2.5, 5, 10, 25, 50, 100, 250, 500, 1,000

SCXI-1121: 1, 2, 5, 10, 20, 50, 100, 200, 250, 500, 1,000, 2,000

SCXI-1122: 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1,000, 2,000 SCXI-1126: 250, 500, 1,000, 2,000, 4,000, 8,000, 16,000, 32,000, 64,000, 128,000

```
SCXI-1140: 1, 10, 100, 200, 500
SCXI-1141: 1, 2, 5, 10, 20, 50, 100
SCXI-1142: 1, 2, 5, 10, 20, 50, 100
SCXI-1143: 1, 2, 5, 10, 20, 50, 100
```

**DAQboard** is the DAQ device you are using with this SCXI module. This applies only when  $\mathbf{opCode} = 0, 1, 2, \text{ or } 3 \text{ and } \mathbf{moduleSlot}$  is an analog input module. Otherwise, set to 0.

**DAQchan** is the analog input channel of **DAQboard** that you are using with this SCXI module. If you have only one chassis connected to **DAQboard**, and **moduleSlot** is in multiplexed mode, **DAQchan** should be 0. **calConst1** is scaled by the current input range and polarity settings for this channel. This applies only when **opCode** = 0, 1, 2, or 3 and **moduleSlot** is an analog input module. Otherwise, set to 0.

**DAQgain** is the gain setting for **DAQchan**. It is used to scale **calConst1** (binary offset). This applies only when **opCode** = 0, 1, 2, or 3 and **moduleSlot** is an analog input module. Otherwise, set to 0.

**TBgain** is the terminal block gain applied to the SCXI channel, if any. Currently, the SCXI-1327 terminal block is the only terminal block that applies gain to your SCXI channels. The SCXI-1327 has switches that you use to select either a gain of 1.0 or a gain of 0.01. You can use this terminal block with an SCXI-1120, SCXI-1120D, or SCXI-1121 module. For terminal blocks that do not apply gain to your SCXI channels, set **TBgain** =1.0.

**scaled1**, **binary1** is the measured input value/binary pair you have taken for the given channel and range or gain. If the module is analog output, **scaled1** is the voltage or current you measured at the output channel after writing the binary value **binary1** to the output channel.

If the module is analog input, **binary1** is the binary value you read from the input channel with a known voltage of **scaled1** applied at the input. The **binary1** parameter is a floating point, so you can take multiple binary readings from **scaled1** and average them to be more accurate and reduce the effects of noise.

scaled2, binary2 is a second measured input value/binary pair you have taken for the given channel and range or gain. If the module is analog output, scaled2 is the voltage or current you measured when NI-DAQ wrote the binary value binary2 to the output channel. If the module is analog input, binary2 is the binary reading from the input channel with a known voltage of scaled2 applied at the input.

calConst1 is the first calibration constant. For analog output modules, calConst1 is the binary value that generates the voltage/current at the lower end of the voltage or current range. For analog input modules, calConst1 is the binary zero offset; that is, the binary reading that would result from an input value of zero. The offset is stored as a voltage and must be scaled to a binary value. It is scaled based on DAQgain and the current configuration of DAQchan (polarity and input range). If opCode = 1 or 2, calConst1 is a return value calculated from

the input value/binary pairs. If  $\mathbf{opCode} = 0$ ,  $\mathbf{calConst1}$  is a return constant retrieved from the **calibrationArea**. If  $\mathbf{opCode} = 0$  and  $\mathbf{channel} = -2$ ,  $\mathbf{calConst1}$  is the actual voltage excitation value returned in volts. If  $\mathbf{opCode} = 3$ , you should pass your first calibration constant in  $\mathbf{calConst1}$  for NI-DAQ to store in  $\mathbf{calibrationArea}$ .

calConst2 is the second calibration constant. For analog output modules, calConst2 is the binary value that generates the voltage/current at the upper end of the voltage/current range. For analog input modules, calConst2 is the gain adjust factor; that is, the ratio of the real gain to the ideal gain setting. If opCode = 1 or 2, calConst2 is a return value calculated from the input value/binary pairs. If opCode = 0, calConst2 is a return constant retrieved from the calibrationArea. If opCode = 0 and channel = -2, calConst2 is the actual current excitation value returned in units of milliamperes. If opCode = 3, you should pass your second calibration constant in calConst2 for NI-DAQ to store in calibrationArea.



**Note** C Programmers—calConst1 and calConst2 are pass-by-address parameters.

## **Using This Function**

## **Analog Input Calibration**

When you call SCXI\_Scale to scale binary analog input data, NI-DAQ uses the binary offset and gain adjust calibration constants loaded for the given module, channel, and gain setting to scale the data to voltage or frequency. Refer to the SCXI\_Scale function description for the equations used.

By default, NI-DAQ loads calibration constants for the SCXI-1101, SCXI-1102, SCXI-1104, SCXI-1122, SCXI-1126, SCXI-1141, SCXI-1142, and SCXI-1143 from the module EEPROM (see the *EEPROM Organization* section later in this function for more information). The SCXI-1141, SCXI-1142, and SCXI-1143 have only gain adjust constants in the EEPROM and do not have binary zero offset in the EEPROM. All other analog input modules have no calibration constants by default; NI-DAQ assumes no binary offset and ideal gain settings for those modules *unless* you use the following procedure to store calibration constants for your module.

You can determine calibration constants based specifically on your application setup, which includes your type of DAQ device, your DAQ device settings, and your cable assembly, all combined with your SCXI module and its configuration settings.



**Note** NI-DAQ stores constants in a table for each SCXI module gain setting. If your module has independent gains on each channel, NI-DAQ stores constants for each channel at each gain setting. When you use the following procedure, you are also calibrating for your DAQ device settings, so you must use the same DAQ device settings whenever you use the new calibration constants. The SCXI-1122, SCXI-1126, SCXI-1141, SCXI-1142, and SCXI-1143 factory-set EEPROM constants apply only to the SCXI-1122, SCXI-1126,

SCXI-1141, SCXI-1142, and SCXI-1143 amplifiers, respectively, so you can use those with any DAQ device setup.

To perform a two-point analog input calibration, perform the following steps:

- 1. If you are using an E Series device, you should calibrate your ADC first using the Calibrate\_E\_Series function.
- 2. Make sure the SCXI gain is set to the gain you will be using in your application. If you are using an SCXI-1100, SCXI-1102, SCXI-1122, SCXI-1126, SCXI-1141, SCXI-1142, or SCXI-1143, you can use the SCXI\_Set\_Gain function, because those modules have software-programmable gain. For other analog input modules, you need to set gain jumpers or DIP switches appropriately.
- 3. Use SCXI\_Single\_Chan\_Setup to program the module for a single-channel operation (as opposed to a channel scanning operation).
- 4. Ground your SCXI input channel. If you are using an SCXI-1100, SCXI-1101, SCXI-1122, SCXI-1141, SCXI-1142, or SCXI-1143, you can use the SCXI\_Calibrate\_Setup function to internally ground the module amplifier inputs. For other analog input modules, you need to wire the positive and negative channel inputs together at the terminal block.
- 5. Take several readings using the DAQ functions and average them for greater accuracy. You should use the DAQ device gain/range settings you will be using in your application. If you are using an E Series device, you may be able to enable dither using the MIO\_Config function to make your averaging more accurate. You should average over an integral number of 60 Hz or 50 Hz power line cycles to eliminate line noise. You now have your first input value/binary pair: scaled1 = 0.0, and binary1 is your binary reading or binary average.
- 6. Now apply a known, stable, non-zero input value to your input channel at the terminal block. Preferably, your input value should be close to the upper limit of your input range for the given gain setting.
- 7. Take another binary reading or average. If your binary reading is the maximum binary reading for your DAQ device, you should try a smaller input value. This is your second input value/binary pair: **scaled2** and **binary2**.
- 8. Call SCXI\_Cal\_Constants with your two input value/binary pairs and **opCode** = 2. Make sure you pass the correct **SCXIgain** you used and pass the gain code you used in AI\_Read or DAQ\_Op in the **DAQgain** parameter.
  - If you are using an SCXI-1101, SCXI-1102, SCXI-1104, SCXI-1122, SCXI-1126, SCXI-1141, SCXI-1142, or SCXI-1143, you can save the constants in the module EEPROM (calibrationArea = 1 or 3). Refer to the *EEPROM Organization* section later in this function for information about constants in the EEPROM. It is best to use calibrationArea = 3 (user EEPROM area) as you are calibrating, and then call SCXI\_Cal\_Constants again at the end of your calibration sequence with opCode = 4

to copy your EEPROM area to the default EEPROM load area. That way there are two copies of your new constants, and you can revert to the factory constants using **opCode** = 4 without wiping out your new constants entirely.

For other analog input modules, you must specify **calibrationArea** = 0 (NI-DAQ memory). Unfortunately, calibration constants stored in NI-DAQ memory are lost at the end of the current NI-DAQ session. You might want to create a file and save the constants returned in **calConst1** and **calConst2** so that you can load them again in subsequent application runs using SCXI\_Cal\_Constants with **opCode** = 3.

Any subsequent calls to SCXI\_Scale for the given module, channel, and gain setting will use the new calibration constants when scaling. You can repeat steps 2 through 8 for any other channel or gain settings you want to calibrate.

You can use a different input value for the first measurement instead of grounding the input channel. For instance, if you know you will be using a specific input value range, you might use the endpoints of your expected input range as **scaled1** and **scaled2**. Then you would be specifically calibrating your expected input range.

If you are using an SCXI-1100, SCXI-1101, SCXI-1122, SCXI-1126, SCXI-1141, SCXI-1142, or SCXI-1143, you can perform a one-point calibration to determine the binary offset; you can do this easily without external hookups using the SCXI\_Calibrate\_Setup function to internally ground the amplifier. Use the procedure above, skipping steps 6 and 7, and using **opCode** = 1 for the SCXI\_Cal\_Constants function.

If you are storing calibration constants in the SCXI-1101, SCXI-1102, SCXI-1104, SCXI-1122, SCXI-1126,SCXI-1141, SCXI-1142, or SCXI-1143 EEPROM, your binary offset and gain adjust factors must not exceed the ranges given in the respective module user manuals. The constant format in the EEPROM does not allow for larger constants. If your constants exceed these specifications, the function returns **badExtRefError**. If this error occurs, you should make sure your **SCXIgain**, **DAQgain**, and **TBgain** values are the actual settings you used to measure the volt/binary pairs, and you might want to recalibrate your DAQ device, if applicable.

## **Analog Output Calibration**

When you call SCXI\_AO\_Write to output a voltage or current to your SCXI-1124 module, NI-DAQ uses the calibration constants loaded for the given module, channel, and output range to scale the voltage or current value to the appropriate binary value to write to the output channel. By default, NI-DAQ loads calibration constants into memory for the SCXI-1124 from the module EEPROM load area (see the *EEPROM Organization* section for more information).

You can recalibrate your SCXI-1124 module to create your own calibration constants using the following procedure:

- 1. Use the SCXI\_AO\_Write function with **opCode** = 1. If you are calibrating a voltage output range, pass the parameter **binaryData** = 0. If you are calibrating the 0 to 20 mA current output range (**rangeCode** = 6), pass the parameter **binaryData** = 255.
- 2. Measure the output voltage or current at the output channel with a voltmeter. This is your first volt/binary pair: **binary1** = 0 or 255 and **scaled1** is the voltage or current you measured at the output.
- 3. Use the SCXI\_AO\_Write function with **opCode** = 1 to write the **binaryData** = 4,095 to the output DAC.
- 4. Measure the output voltage or current at the output channel. This is your second volt/binary pair: **binary2** = 4,095 and **scaled2** is the voltage or current you measured at the output.
- 5. Call SCXI\_Cal\_Constants with your input value/binary pairs and opCode = 2. You can save the constants on the module EEPROM (calibrationArea = 1 or 3). Refer to the following EEPROM Organization section for information about constants in the EEPROM. It is best to use calibrationArea = 3 (user EEPROM area) as you are calibrating, and then call SCXI\_Cal\_Constants again at the end of your calibration sequence with opCode = 4 to copy the user EEPROM area to the default load area. That way there will be two copies of your new constants and you can revert to the factory constants using opCode = 4 without wiping out your new constants entirely.

Repeat the procedure above for each channel and range you want to calibrate. Subsequent calls to SCXI\_AO\_Write will use your new constants to scale voltage or current to the correct binary value.

# **EEPROM Organization**

The SCXI-1101, SCXI-1102, SCXI-1104, SCXI-1122, SCXI-1124, SCXI-1126, SCXI-1141, SCXI-1142, and SCXI-1143 modules have an onboard EEPROM to handle storage of calibration constants. The EEPROM is divided into the following three areas:

- The **factory area** is shipped with a set of factory calibration constants; you cannot write into the factory area, but you can read from it.
- The **default load area** is where NI-DAQ automatically looks to load calibration constants the first time you access the module during an NI-DAQ session using an NI-DAQ function call, such as SCXI\_Reset, SCXI\_Single\_Chan\_Setup, or SCXI\_AO\_Write. When the module is shipped, the default load area contains a copy of the factory calibration constants. When you write to the default load area using SCXI\_Cal\_Constants, NI-DAQ also updates the constants in NI-DAQ memory.

• The **user area** is an area for you to store your own calibration constants that you calculate by following the instructions above and using the SCXI\_Cal\_Constants function. You can also put a copy of your own constants in the default load area if you want NI-DAQ to automatically load your constants for subsequent NI-DAQ sessions.

# SCXI\_Calibrate

### **Format**

status = SCXI\_Calibrate (SCXIchassisID, moduleSlot, moduleChan, opCode, calibrationArea, SCXIgain, refVoltage, DAQdevice, DAQchan)

## **Purpose**

Performs either a two-point offset/gain-adjust calibration (for the SCXI-1112 module) or a one-point offset calibration (for the SCXI-1125 module). The calculated offset/gain-adjust calibration constants are then stored in the default EEPROM load area, as well as in current NI-DAQ memory. Two-point calibrations use an internal reference voltage. The actual value of the voltage reference is stored in the module EEPROM. This function allows the updating of the reference voltage value in the EEPROM to correct for drift over time. This function also allows calibration constants from other EEPROM areas (user and factory) or NI-DAQ memory to be copied to the default EEPROM load area.



**Note** The module has to be in multiplexed mode in order to use this function.

### **Parameters**

## Input

| Name            | Туре | Description                                                                                                  |
|-----------------|------|--------------------------------------------------------------------------------------------------------------|
| SCXIChassisID   | i16  | SCXI chassis ID number                                                                                       |
| moduleSlot      | i16  | SCXI module slot number                                                                                      |
| moduleChan      | i16  | module input channel number                                                                                  |
| opCode          | i16  | operation to perform                                                                                         |
| calibrationArea | i16  | location of the calibration<br>constants that are copied when<br>performing a copy-to-load-area<br>operation |
| SCXIgain        | f64  | gain setting for the SCXI input channel to be calibrated                                                     |
| refVoltage      | f64  | value of reference voltage to be<br>stored in the EEPROM for the<br>external calibration operation           |

| Name      | Туре | Description                                                                                  |
|-----------|------|----------------------------------------------------------------------------------------------|
| DAQdevice | i16  | device number of DAQ device<br>you use to acquire data from the<br>module that you calibrate |
| DAQchan   | i16  | DAQ device channel you use to<br>acquire data from the module<br>being calibrated            |

### **Parameter Discussion**

moduleChan is the number of the channel on the module.

Range: 0 to n-1, where n is the number of channels available on the module.

**opCode** specifies the particular operation to perform.

- 0: Perform a two-point calibration (for the SCXI-1112) or a one-point calibration (for the SCXI-1125) for the given channel and gain and write the calculated calibration constants to the default EEPROM load area of the module, as well as to current NI-DAQ memory.
- 1: (SCXI-1112 only)—Take the value passed in the **refVoltage** parameter and write it to the module EEPROM in the area used to store the internal reference voltage.
- Copy the calibration constants in the area specified by calibrationArea to the default EEPROM load area.

calibrationArea is the location NI-DAQ uses for the calibration constants.

- 0: NI-DAQ memory—NI-DAQ maintains a calibration table in memory for use in scaling operations for the module.
- 1: Default EEPROM load area.
- Factory EEPROM area—You cannot write to this area, but you can read or copy from it.
- 3: (not on the SCXI-1125)—User EEPROM area.

**SCXIgain** is the SCXI channel gain setting. Valid **SCXIgain** values depend on the module type.

```
SCXI-1112:100
SCXI-1125:1, 2, 5, 10, 20, 50, 100, 200, 250, 500, 1,000, 2,000
```

(SCXI-1112 only)—**refVoltage** is the voltage value to store in the module EEPROM area reserved for the value of the onboard voltage reference used to perform a two-point calibration. This applies only when **opCode** = 1. Otherwise, set **refVoltage** to 0.0.

**DAQdevice** is the DAQ device you are using with this SCXI module. This is used only for  $\mathbf{opCode} = 0$ . Otherwise, set **DAQdevice** to 0.

**DAQchan** is the analog input channel of **DAQdevice** that you are using with this SCXI module. In most cases this will be channel 0. This applies only when **opCode** = 0. Otherwise, set **DAQdevice** to 0.

## **Using This Function**

When you call SCXI\_Scale to scale binary analog input data, NI-DAQ uses the binary offset and gain adjust calibration constants loaded for the given module, channel, and gain setting to scale the data to voltage. Please refer to the SCXI\_Scale function description for the equations used.

By default, NI-DAQ loads calibration constants from the module EEPROM for modules that store calibration constants in an EEPROM. The modules that this function supports, the SCXI-1112 and the SCXI-1125, both have EEPROMs with calibration constants. See the *EEPROM Organization* section later in this function for more information.

To calibrate the SCXI-1112 (a two-point offset and gain adjust calibration) or the SCXI-1125 (just a one-point offset calibration), perform the following steps:

- 1. Calibrate the DAQ device you will be using. For an E Series device, use the Calibrate\_E\_Series function.
- 2. Make sure the module is configured to be in multiplexed mode.
- 3. Call SCXI\_Calibrate with **opCode** = 0 and the other parameters set up appropriately as described in this function description.

Any subsequent calls to SCXI\_Scale for the given module, channel, and gain setting use the new calibration constants when scaling. You can repeat step 3 for any other channel or gain settings you want to calibrate.

In performing a calibration operation on the SCXI-1112, SCXI\_Calibrate routes an onboard reference voltage to the channel you calibrate. The value of this reference voltage is read from the module EEPROM. Over time and depending on the conditions the system is set in, the reference voltage value may drift. When this happens, you need to update the reference voltage value stored in the EEPROM. To do this, perform the following steps:

- 1. Use SCXI\_Calibrate\_Setup with **operation** = 3 to route the module onboard reference directly to the module output.
- 2. Use a DMM to accurately measure the value of the reference.
- 3. Call SCXI\_Calibrate with **opCode** = 1 and **refVoltage** set to the value measured in step 2.

## **EEPROM Organization**

The modules supported by SCXI\_Calibrate, the SCXI-1112 and the SCXI-1125, have onboard EEPROMs to handle storage of calibration constants. In the case of the SCXI-1112, the onboard reference voltage value is stored in its own area, independent of the area containing calibration constants. The EEPROM is divided into either three areas, in the case of the SCXI-1112, or two areas in the case of the SCXI-1125:

- The *factory area* is shipped with a set of factory calibration constants; you cannot write into the factory area, but you can read from it.
- The *default load area* is where NI-DAQ automatically looks to load calibration constants the first time they are accessed. When the module is shipped, the default load area contains a copy of the factory calibration constants. When you write to the default load area using SCXI\_Calibrate with **opCode** = 0, NI-DAQ also updates the constants in NI-DAQ memory.
- The *user area*, which is not present on the SCXI-1125, is the area where you store your own calibration constants. Please refer to the SCXI\_Cal\_Constants function description for more information about this area.

# SCXI\_Calibrate\_Setup

#### **Format**

status = SCXI\_Calibrate\_Setup (SCXIchassisID, moduleSlot, calOp)

## **Purpose**

Used to ground the amplifier inputs of an SCXI-1100, SCXI-1101, SCXI-1122, SCXI-1141, SCXI-1142, or SCXI-1143 so that you can determine the amplifier offset. You can also use this function to switch a shunt resistor across your bridge circuit to test the circuit. Shunt calibration is supported for the SCXI-1122 or SCXI-1121 modules with the SCXI-1321 terminal block.

### **Parameters**

### Input

| Name          | Туре | Description         |
|---------------|------|---------------------|
| SCXIchassisID | i16  | chassis ID number   |
| moduleSlot    | i16  | chassis slot number |
| calOp         | i16  | calibration mode    |

#### Parameter Discussion

**calOp** indicates the calibration mode you want.

- 0: Disable calibration.
- 1: Connect the positive and negative inputs of the SCXI-1100, SCXI-1101, SCXI-1101, SCXI-1122, SCXI-1141, SCXI-1142, or SCXI-1143 amplifier together and to analog reference.
- 2: Switch the shunt resistors across the bridge circuit on the SCXI-1121 (Revision C or later) or SCXI-1122.
- 3: Route the onboard reference voltage directly to the module output (SCXI-1112 only).

## **Using This Function**

The zero offset of the SCXI-1100, SCXI-1122, SCXI-1141, SCXI-1142, or SCXI-1143 amplifiers varies with the module gain. When you know the offset at a specific gain setting, you can add that offset to any readings acquired at that gain. In general, the procedure for determining the offset at a particular gain is as follows:

1. Call SCXI\_Single\_Chan\_Setup—Enable the module output, route the module output on the SCXIbus if necessary, and resolve any SCXIbus contention if necessary. For

- the SCXI-1100, SCXI-1101, and SCXI-1122, the module channel you specify is irrelevant.
- 2. Call SCXI\_Set\_Gain—Set the module gain to the setting that you will use in your application.
- 3. Call SCXI\_Calibrate\_Setup—Ground the amplifier inputs.
- 4. Acquire data using the DAQ functions—you should acquire and average many samples. If you have enabled the filter on the module, wait for the amplifier to settle after calling SCXI\_Calibrate\_Setup before you acquire data. Refer to your SCXI-1100, SCXI-1122, SCXI-1141, SCXI-1142, or SCXI-1143 user manuals for settling times caused by filter settings.
- 5. Call SCXI\_Calibrate\_Setup—Disable calibration.
- 6. Continue with your application—Whenever you acquire samples from the module at the gain that you chose in step 2, subtract the binary offset that you read in step 4 from each sample before scaling the data, or call SCXI\_Cal\_Constants to store the offset in NI-DAQ memory or the EEPROM. Then, subsequent calls to SCXI\_Scale for the given gain automatically subtracts the offset for you. Refer to the SCXI\_Cal\_Constants function for more information.

Refer to your SCXI-1122 or SCXI-1321 user manuals for information about how the module applies the shunt resistor when calOp = 2.

The SCXI-1141, SCXI-1142, and SCXI-1143 have a separate amplifier for each channel, so you have to repeat the above procedure for each channel you want to calibrate.

# SCXI\_Change\_Chan

### **Format**

status = SCXI\_Change\_Chan (SCXIchassisID, moduleSlot, moduleChan)

## **Purpose**

Selects a new channel of a multiplexed module that you have previously set up for a single-channel analog input operation using the SCXI\_Single\_Chan\_Setup function.

#### **Parameters**

## Input

| Name          | Туре | Description         |
|---------------|------|---------------------|
| SCXIchassisID | i16  | chassis ID number   |
| moduleSlot    | i16  | chassis slot number |
| moduleChan    | i16  | channel number      |

### Parameter Discussion

**moduleChan** is the channel number of the new input channel on the module that is to be read. Range: 0 to n-1, where n is the number of input channels on the module.

-1: Set up to read the temperature sensor on the terminal block connected to the module if the temperature sensor is in the MTEMP configuration.

(SCXI-1112 only) c = -1 to (-n), where n is the number of analog input channels on the module. This number selects the CJTEMP channel on the analog input channel (-c) -1; that is, -1 selects the CJTEMP channel on channel 0, -2 selects the CJTEMP channel on channel 1, and so on.

# **Using This Function**

It is important to realize that this function affects only the channel selection on the module. It does not affect the module output enable or any analog signal routing on the SCXIbus; the SCXI\_Single\_Chan\_Setup function is required to do that. SCXI\_Change\_Chan can be very useful in applications like those shown in Chapter 3, *Software Overview*, of the *NI-DAQ User Manual for PC Compatibles*, especially when you are trying to read several channels on a module in a loop at relatively high speeds. However, you will need to call SCXI\_Single\_Chan\_Setup again to select a channel on a different module.

# **SCXI\_Configure\_Filter**

### **Format**

## **Purpose**

Configures the filter on any SCXI module that supports programmable filter settings. Currently, only the SCXI-1122, SCXI-1125, SCXI-1126, SCXI-1141, SCXI-1142, and SCXI-1143 have programmable filter settings; the other analog input modules have hardware-selectable filters.

Chapter 2

### **Parameters**

# Input

| Name          | Туре | Description                                  |
|---------------|------|----------------------------------------------|
| SCXIchassisID | i16  | chassis ID number                            |
| moduleSlot    | i16  | chassis slot number                          |
| channel       | i16  | module channel                               |
| filterMode    | i16  | filter configuration mode                    |
| freq          | f64  | filter cutoff frequency                      |
| cutoffDivDown | u16  | external signal divisor for cutoff frequency |
| outClkDivDown | u16  | clock signal divisor to send to OUTCLK       |

# Output

| Name       | Type | Description                    |
|------------|------|--------------------------------|
| actualFreq | f64  | actual filter cutoff frequency |

### **Parameter Discussion**

**channel** is the module channel for which you want to change the filter configuration. If **channel** = -1, SCXI\_Configure\_Filter changes the filter configuration for all channels on the module.

**filterMode** indicates the filter configuration mode for the given **channel**.

- 0: Bypass the filter.
- 1: Set filter cutoff frequency to **freq**.

- 2: Configure the filter to use an external signal. The module divides the external signal by **cutoffDivDown** to determine the filter cutoff frequency. The module also divides the external signal by **outClkDivDown** and sends it to the module front connector OUTCLK pin. You can use this filter mode to configure a tracking filter. You can use this mode only with the SCXI-1141, SCXI-1142, and SCXI-1143.
- 3: Enable the filter (the reverse of **filterMode** 0).

**freq** is the cutoff frequency you want to select from the frequencies available on the module if **filterMode** = 1.

The SCXI-1122 has two possible cutoff frequencies:

```
4.0: -10 dB at 4 Hz
4.000.0: -3 dB at 4 kHz
```

The SCXI-1125 has two possible cutoff frequencies:

```
4.0: -10 dB at 4 Hz
10,000: -3 dB at 10 kHz
```

The SCXI-1126 has four possible cutoff frequencies (1 Hz, 40 Hz, 320 Hz, and 1 kHz), which attenuate at -80 dB.

The SCXI-1141, SCXI-1142, and SCXI-1143 have a range of cutoff frequencies from 10 Hz to 25 kHz. SCXI\_Configure\_Filter produces the frequency you want as closely as possible by dividing an internal 10 MHz signal on the SCXI-1141, SCXI-1142, or SCXI-1143. The function returns the exact cutoff frequency produced in the output parameter **actualFreq**.

If **filterMode** = 2, set **freq** to the *approximate* frequency of the external signal you are using. Refer to the user manual for your SCXI-1141, SCXI-1142, or SCXI-1143 module for an explanation of the impact of different signal frequencies on the filters.

If **filterMode** = 0 or 3, NI-DAQ ignores **freq**.

**cutoffDivDown** is an integer by which the module divides the external signal to determine the filter cutoff frequency when **filterMode** = 2. NI-DAQ ignores this parameter if **filterMode** is not 2.

Range: 2 to 65,535.

**outClkDivDown** is an integer by which the module divides either the internal 10 MHz signal (if **filterMode** = 1) or the external signal (if **filterMode** = 2) to send back to the module front connector OUTCLK pin. This parameter is only used for the SCXI-1141, SCXI-1142, and SCXI-1143.

Range: 2 to 65,535.

actualFreq returns the actual cutoff frequency that the module uses.

## **Using this Function**

The SCXI-1122 has one filter setting applied to all channels on the module; therefore, you must set **channel** = -1. The SCXI-1122 and the SCXI-1125 only work with **filterMode** = 1; you cannot configure the SCXI-1122 or the SCXI-1125 to bypass the filter or to use an external signal to set the cutoff frequency. The default frequency setting for the SCXI-1122 and the SCXI-1125 is 4 Hz.

The SCXI-1126 has eight filter settings, one for each channel. These settings only work with **filterMode** = 1. The default frequency setting for the SCXI-1126 is 1 Hz.

The SCXI-1141, SCXI-1142, and SCXI-1143 also have one filter setting applied to all channels, so you must use **channel** = -1 when you select a cutoff frequency for your module. After you select the cutoff frequency for the entire module, you can configure one or more of the channels to enable the filter by calling SCXI\_Configure\_Filter again for each channel and setting **filterMode** = 3. By default, all the channel filters on the SCXI-1141, SCXI-1142, and SCXI-1143 are bypassed.

# **SCXI** Get Chassis Info

### **Format**

status = SCXI\_Get\_Chassis\_Info (SCXIchassisID, chassisType, chassisAddress, commMode, commPath, numSlots)

## **Purpose**

Returns chassis configuration information.

#### **Parameters**

### Input

| Name          | Туре | Description       |
|---------------|------|-------------------|
| SCXIchassisID | i16  | chassis ID number |

# Output

| Name           | Туре | Description                                       |
|----------------|------|---------------------------------------------------|
| chassisType    | *i16 | type of SCXI chassis                              |
| chassisAddress | *i16 | hardware jumpered address of an SCXI-1001 chassis |
| commMode       | *i16 | communication mode                                |
| commPath       | *i16 | communication path                                |
| numSlots       | *i16 | number of plug-in module slots                    |

### Parameter Discussion

chassisType indicates what type of SCXI chassis is configured for the given SCXIchassisID.

- 0: SCXI-1000 4-slot chassis.
- 1: SCXI-1001 12-slot chassis.
- 2: SCXI-2000 4-slot remote chassis.
- 3: VXI-SC-1000 carrier module.
- 4: PXI-1010 chassis.
- 5: PXI-1011 chassis.

**chassisAddress** is the hardware-jumpered address of an SCXI chassis.

Range: 0 to 31 (SCXI-1000, SCXI-1001, VXI-SC-1000, and PXI-1010).

0 to 255 (SCXI-2000 or SCXI chassis with SCXI-2400 module).

**commMode** is the Communication mode that is used when the driver communicates with the SCXI chassis and modules.

- 0: Communication mode is disabled. In effect, the chassis is disabled.
- 1: Serial communication is enabled through a digital port of a DAQ device that is cabled to a module in the chassis.
- 2: Serial communication is enabled over the PC parallel port that is cabled to the SCXI-1200 module.
- Serial communication is enabled over the PC serial port that is cabled to one or more SCXI-2000 chassis or SCXI-2400 modules.
- 4: Serial communication is enabled over the VXI backplane.
- 5: Serial communication is enabled through a digital port of a DAQ device internally connected to the SCXIbus of a PXI-1010 or PXI-1011 chassis.

**commPath** is the communication path that is used when the driver communicates with the SCXI chassis and modules. If **commMode** = 1, 2, 4, or 5, **commPath** should be the device number of the DAQ device that is the designated communicator for the chassis. If **commMode** = 3, **commPath** is the serial port for this chassis. When **commMode** = 0, **commPath** is meaningless.

**numSlots** is the number of plug-in module slots in the SCXI chassis.

- 4: For the SCXI-1000, SCXI-2000, and PXI-1010 chassis.
- 8: For the PXI-1011 chassis.
- 12: For the SCXI-1001 chassis.
- 24: For the VXI-SC-1000 carrier module.



Note C Programmers—chassisType, chassisAddress, commMode, commPath, and numSlots are pass-by-address parameters.

# **SCXI** Get Module Info

### **Format**

status = SCXI\_Get\_Module\_Info (SCXIchassisID, moduleSlot, modulePresent, operatingMode, DAQdeviceNumber)

# **Purpose**

Returns configuration information for the given chassis slot number.

#### **Parameters**

### Input

| Name          | Type | Description         |
|---------------|------|---------------------|
| SCXIchassisID | i16  | chassis ID number   |
| moduleSlot    | i16  | chassis slot number |

# Output

| Name            | Type | Description                                                  |
|-----------------|------|--------------------------------------------------------------|
| modulePresent   | *i32 | type of module present in given slot                         |
| operatingMode   | *i16 | multiplexed or parallel mode                                 |
| DAQdeviceNumber | *i16 | device number of the DAQ device that is cabled to the module |

## **Parameter Discussion**

modulePresent indicates what type of module is present in the given slot.

- -1: Empty slot; there is no module present in the given slot.
- 1: SCXI-1126.
- 2: SCXI-1121.
- 4: SCXI-1120.
- 6: SCXI-1100.
- 8: SCXI-1140.
- 10: SCXI-1122.
- 12: SCXI-1160.
- 13: SCXI:1125.
- 14: SCXI-1161.
- 16: SCXI-1162.
- 18: SCXI-1163.

- 20: SCXI-1124.
- 22: SCXI-1101.
- 24: SCXI-1162HV.
- 28: SCXI-1163R.
- 30: SCXI-1102.
- 32: SCXI-1141.
- 33: SCXI-1112.
- 38: SCXI-1200.
- 40: SCXI-2400.
- 42: VXI-SC-1102.
- 45: SCXI-1104.
- 44: VXI-SC-1150.
- 64: SCXI-1143.
- 68: SCXI-1120D.
- 96: SCXI-1142.

Any other value returned in the **modulePresent** parameter indicates that an unfamiliar module is present in the given slot.

**operatingMode** indicates whether the module present in the given slot is being operated in Multiplexed or Parallel mode. Refer to Chapter 13, *SCXI Hardware*, in the *DAQ Hardware Overview Guide* for an explanation of each operating mode. If the slot is empty, **operatingMode** is meaningless.

- 0: Multiplexed operating mode.
- 1: Parallel operating mode.

**DAQdeviceNumber** is the device number of the DAQ device in the PC that is cabled directly to the module present in the given slot. If the slot is empty, **DAQdeviceNumber** is meaningless.

- 0: No DAQ device is cabled to the module.
- n: where n is the device number of the DAQ device cabled to the module.

If the **moduleSlot** contains an SCXI-1200, **DAQdeviceNumber** is the logical device number of the SCXI-1200. If the **moduleSlot** contains an SCXI-2400, **DAQdeviceNumber** is 0.



**Note** C Programmers—**modulePresent**, **operatingMode**, and **DAQdeviceNumber** are pass-by-address parameters.

## **SCXI** Get State

### **Format**

status = SCXI\_Get\_State (SCXIChassisID, moduleSlot, port, channel, data)

## **Purpose**

Gets the state of a single channel or an entire port on a digital or relay SCXI module.

### **Parameters**

### Input

| Name          | Type | Description                                                              |
|---------------|------|--------------------------------------------------------------------------|
| SCXIChassisID | i16  | chassis ID number                                                        |
| moduleSlot    | i16  | module slot number                                                       |
| port          | i16  | port of the module to write to (all current modules support only Port 0) |
| channel       | i16  | channel of the specified port to read from                               |

## Output

| Name | Type | Description                                                                      |
|------|------|----------------------------------------------------------------------------------|
| data | *u32 | Contains data read from a single channel or a digital pattern for an entire port |

### Parameter Discussion

**port** is the port number of the module to be read from. Currently, all of the SCXI modules support only Port 0.

**channel** is the channel number on the specified port.

*n*: Read from a single channel.

SCXI-1160:  $0 \le n < 16$ .

SCXI-1161:  $0 \le n < 8$ .

SCXI-1162:  $0 \le n < 32$ .

SCXI-1162HV:  $0 \le n < 32$ .

SCXI-1163:  $0 \le n < 32$ .

SCXI-1163R:  $0 \le n < 32$ .

-1: Read the state pattern from an entire port.

When **channel** = -1, **data** contains the pattern of an entire port. Bit 0 corresponds to the state of channel 0 in the port, and the states of the other channels are represented in ascending order in **data** so that bit n corresponds to channel n. If the port is less than 32 bits wide, the unused bits in **data** are set to zero.

When **channel** = n, the least significant bit (LSB) (bit 0) of **data** contains the state of channel n on the specified port.

For relay modules, a 0 bit indicates that the relay is closed or in the normally closed position, and a 1 indicates that the module is open or in the normally open position. For SCXI digital modules, a 0 bit indicates that the line is low, and a 1 bit indicates that the line is high.



**Note** For a discussion of the NC and NO positions, see your SCXI module user manual.



**Note** C Programmers—**data** is a pass-by-address parameter.

## **Using This Function**

The SCXI-1160 is a latching module; in other words, the module powers up with its relays in the position they were left at power down. Thus, at the beginning of an NI-DAQ application, there is no way to know the states of the relays. The driver retains the state of a relay as soon as a hardware write takes place.

The SCXI-1161 is a nonlatching module and powers up with its relays in the NC position. After you call SCXI\_Load\_Config or SCXI\_Set\_Config, an actual hardware write to the relays must take place before the driver can obtain the state information of the relays, just like the SCXI-1160. You can call SCXI\_Reset to do this.

The SCXI-1163 and 1163R are optocoupler output modules with 32 digital output channels and 32 solid state relay channels, respectively. NI-DAQ can read the states of the module only if the module is jumper configured and operating in Parallel mode. When operating in Serial or Multiplexed mode, the driver retains the states of the digital output lines in memory. Consequently, a hardware write must take place before the driver can obtain the states of the module.

You should call SCXI\_Reset after a call to SCXI\_Set\_Config or SCXI\_Load\_Config for the SCXI-1160, SCXI-1161, SCXI-1163, and SCXI-1163R modules.

Remember that only on the SCXI-1162, SCXI-1163, SCXI-1162HV, and SCXI-1163R in Parallel mode does NI-DAQ read the states from hardware. On both the SCXI-1160 and SCXI-1161, the driver keeps a software copy of the relay states in memory.

## **SCXI** Get Status

### **Format**

status = SCXI\_Get\_Status (SCXIChassisID, moduleSlot, wait, data)

### **Purpose**

Reads the data in the Status Register on the specified module. This function supports the SCXI-1160, VXI-SC-1102, SCXI-1101, SCXI-1102, SCXI-1104, SCXI-1122, SCXI-1124, SCXI-1125, SCXI-1126, and SCXI-1127 modules.

### **Parameters**

## Input

| Name          | Type | Description                                                                                                          |  |
|---------------|------|----------------------------------------------------------------------------------------------------------------------|--|
| SCXIChassisID | i16  | i16 chassis ID number                                                                                                |  |
| moduleSlot    | i16  | module slot number                                                                                                   |  |
| wait          | i16  | determines if the function should poll the Status<br>Register, until timeout, for the SCXI module to<br>become ready |  |

## Output

| Name | Type | Description                                  |
|------|------|----------------------------------------------|
| data | *u32 | contains the contents of the Status Register |

#### Parameter Discussion

wait determines if the function should poll the Status Register on the module until either the module is ready or timeout is reached. If the module is not ready by timeout, NI-DAQ returns a timeout error.

- 1: The function polls the Status Register on the module, until ready or timeout.
- 0: The function reads and return the Status Register on the module.

data contains the contents of the Status Register.

- 0: Indicates that the module is busy. Do not perform any further operations on the modules until the status bit goes high again. This value means the SCXI-1122 or SCXI-1160 relays are still switching or the SCXI-1124 DACs are still settling.
- 1: Indicates that the module is ready. The SCXI-1122 or SCXI-1160 relays are finished switching or the SCXI-1124 DACs have settled.



**Note** C Programmers—**data** is a pass-by-address parameter.

## **Using This Function**

If **wait** = 1, the function waits a maximum of 100 ms (3 seconds for the SCXI-1126, 2.4 seconds for the SCXI-1125) for the module status to be ready. If, while polling the Status Register, a timeout occurs, the output parameter **data** returns the current value of the Status Register.

The SCXI-1101, SCXI-1102, SCXI-1104, SCXI-1122, SCXI-1124, SCXI-1126, SCXI-1127, SCXI-1160, and VXI-SC-1102 Status Registers contain only one bit, so only the least significant bit of the data parameter is meaningful.

# SCXI\_Load\_Config

### **Format**

status = SCXI\_Load\_Config (SCXIchassisID)

## **Purpose**

Loads the SCXI chassis configuration information that you established in Measurement & Automation Explorer. Sets the software states of the chassis and the modules present to their default states. This function makes no changes to the hardware state of the SCXI chassis or modules.

### **Parameters**

## Input

| Name          | Type | Description       |
|---------------|------|-------------------|
| SCXIchassisID | i16  | chassis ID number |

## **Using This Function**

It is important to realize that this function makes no changes to the hardware. To reset the hardware to its default state, you should use the SCXI\_Reset function. Refer to the SCXI\_Reset function description for a listing of the default states of the chassis and modules.

It is possible to change the configuration programmatically that you established in the configuration utility using the SCXI\_Set\_Config function.

## **SCXI ModuleID Read**

#### **Format**

status = SCXI\_ModuleID\_Read (SCXIchassisID, moduleSlot, ModuleID)

### **Purpose**

Reads the Module ID register of the SCXI module in the given slot.

### **Parameters**

### Input

| Name          | Type | Description        |
|---------------|------|--------------------|
| SCXIchassisID | i16  | chassis ID number  |
| moduleSlot    | i16  | module slot number |

Chapter 2

### Output

| Name     | Туре | Description                        |
|----------|------|------------------------------------|
| moduleID | i32  | module ID read from the given slot |

### Parameter Discussion

**moduleID** is the value read from the Module ID register on the module. The module ID has the same numeric values as the **modulePresent** parameter of the SCXI\_Get\_Module\_Info function.

- -1 or 0: The communication path most likely is broken (for example, the chassis is powered off, a cable is not connected, the wrong cable adapter has been installed, or wrong jumper settings made), or there is no module present in that slot.
  - 1: SCXI-1126.
  - 2: SCXI-1121.
  - 4: SCXI-1120.
  - 5: SCXI-1127.
  - 6: SCXI-1100.
  - 8: SCXI-1140.
  - 10: SCXI-1122.
  - 12: SCXI-1160.
  - 13: SCXI-1125.
  - 14: SCXI-1161.
  - 16: SCXI-1162.
  - 18: SCXI-1163.
  - 20: SCXI-1124.

- 24: SCXI-1162HV.
- 28: SCXI-1163R.
- 30: SCXI-1102.
- 32: SCXI-1141.
- 33: SCXI-1112.
- 38: SCXI-1200.
- 40: SCXI-2400.
- 42: VXI-SC-1102.
- 44: VXI-SC-1150.
- 45: SCXI-1104.
- 64: SCXI-1143.
- 68: SCXI-1120D.
- 96: SCXI-1142.

## **Using This Function**

The principal difference between this function and SCXI\_Get\_Module\_Info is that this function does a hardware read of the module. In contrast, SCXI\_Get\_Module\_Info returns the module type stored by Measurement & Automation Explorer.

You can use SCXI\_ModuleID\_Read to verify that your SCXI system is configured and communicating properly. For example, a call to this function at the beginning of your program ensures that the SCXI chassis is powered on, the SCXI cable is properly connected, and the module in moduleSlot matches the module type configured by Measurement & Automation Explorer. SCXI\_ModuleID\_Read returns a positive status code of

**SCXIModuleTypeConflictError** if the module ID read does not match the configured module type.



**Note** Saving your SCXI configuration in Measurement & Automation Explorer also reads the module ID from the SCXI module being saved and reports an error if the module ID read and the module type being configured do not match. The **Test** button on the **SCXI Devices** tab reads the module IDs of all configured modules and verifies that all the module IDs read from the chassis match the configured module types.

# SCXI MuxCtr Setup

#### **Format**

status = SCXI\_MuxCtr\_Setup (deviceNumber, enable, scanDiv, ctrValue)

### **Purpose**

Enables or disables a DAQ device counter to be used as a multiplexer counter during SCXI channel scanning to synchronize the DAQ device scan list with the module scan list that NI-DAQ has downloaded to Slot 0 of the SCXI chassis.

Chapter 2

### **Parameters**

## Input

| Name         | Туре | Description                                                  |
|--------------|------|--------------------------------------------------------------|
| deviceNumber | i16  | assigned by configuration utility                            |
| enable       | i16  | indicates whether to enable counter 1 to be a mux counter    |
| scanDiv      | i16  | indicates whether the mux counter will divide the scan clock |
| ctrValue     | u16  | value to be programmed into the mux counter                  |

#### Parameter Discussion

**enable** indicates whether to enable a device counter to be a mux counter for subsequent SCXI channel scanning operations.

- 0: Disable the mux counter; the device counter is freed.
- 1: Enable the device counter to be a mux counter.

scanDiv indicates whether the mux counter will divide the scan clock during the acquisition.

- 0: The mux counter does not divide the scan clock; it simply pulses after every *n* mux-gain entry on the DAQ device, where *n* is the **ctrValue**. The mux counter pulses are currently not used by the SCXI chassis or modules, so this mode is not useful.
- 1: The mux counter divides the scan clock so that *n* conversions are performed for every mux-gain entry on the DAQ device, where *n* is the **ctrValue**.

**ctrValue** is the value NI-DAQ programs into the mux counter. If **enable** = 1 and **scanDiv** = 1, **ctrValue** is the number of conversions NI-DAQ performs on each mux-gain entry on the DAQ device. If **enable** = 0, NI-DAQ ignores this parameter.

## **Using This Function**

You can use this function to synchronize the scan list that NI-DAQ has loaded into the mux-gain memory of the DAQ device and the SCXI module scan list that NI-DAQ has loaded into Slot 0 of the SCXI chassis. The total number of samples to be taken in one pass through each scan list should be the same. The Lab and 1200 Series and E Series devices have a dedicated mux counter.

For example, for the following scan lists, a **ctrValue** of 8 causes NI-DAQ to take eight samples for each MIO or AI scan list entry. The first two entries in the module scan list occurs during the first entry of the MIO or AI scan list, at an MIO or AI gain of 5. The third module scan list entry occurs during the second entry of the MIO or AI scan list, at an MIO or AI gain of 10. Thus, NI-DAQ uses the **ctrValue** here to distribute different MIO or AI gains across the module scan list, as well as to make the scan list lengths equal at 16 samples each.

 Module
 Number of Samples

 2
 4

 3
 4

 4
 8

Table 2-28. SCXI Module Scan List

| T-1-1- | 0 00  | B ALC | A I   | 0    | 1 1-4 |
|--------|-------|-------|-------|------|-------|
| Table  | 2-29. | IVIIU | or Al | Scan | LIST  |

| Module | Number of<br>Samples | Channel | Gain |
|--------|----------------------|---------|------|
| 2      | 4                    | 0       | 5    |
| 3      | 4                    | 0       | 10   |
| 4      | 8                    | _       | _    |

Another example would use the same module scan list in the preceding table, but use as MIO or AI scan list with only one entry for channel 0. In this case, a **ctrValue** of 16 would be appropriate.

### **Format**

status = SCXI\_Reset (SCXIchassisID, moduleSlot)

### **Purpose**

Resets the specified module to its default state. You can also use SCXI\_Reset to reset the Slot 0 scanning circuitry or to reset the entire chassis.

Chapter 2

#### **Parameters**

### Input

| Name          | Туре | Description         |
|---------------|------|---------------------|
| SCXIchassisID | i16  | chassis ID number   |
| moduleSlot    | i16  | chassis slot number |

### **Parameter Discussion**

moduleSlot is the chassis slot number of the module that is to be reset.

Range: 1 to n, where n is the number of slots in the chassis.

0: Reset Slot 0 of the chassis by resetting the module scan list and scanning circuitry. If this is a remote SCXI chassis, Slot 0 is rebooted; it will take a few seconds for this call to return because it waits for the chassis to finish booting and attempts to reestablish communication with the chassis.

-1: Reset all modules present in the chassis and reset Slot 0.



**Note** When used with the SCXI-1102 module, this function will not return until the module's gain amplifier is settled to within 0.01% upon a gain change. This may result in a noticeable amount of delay.

## **Using This Function**

The default states of the SCXI modules are as follows:

SCXI-1102

Module gain = 1.

Channel 0 =Selected.

SCXI-1104

Channel 0 =Selected.

#### • SCXI-1112

Channel 0 =Selected.

SCXI-1100 and SCXI-1122:

Module gain = 1.

Module filter = 4 Hz (SCXI-1122 only).

Channel 0 =Selected.

Multiplexed channel scanning = Disabled.

Module output = Enabled if the module is cabled to a DAQ device.

Calibration = Disabled.

SCXI-1101 and SCXI-1127:

No channel selected.

- SCXI-1120, SCXI-1120D, SCXI-1121, and SCXI-1140:
  - If the module is operating in Multiplexed mode:

Channel 0 =Selected.

Multiplexed channel scanning = Disabled.

Module output = Enabled if the module is cabled to a DAQ device.

Hold count = 1.

If the module is operating in Parallel mode:

All channels = Enabled.

Track/hold signal = Disabled.

#### SCXI-1125:

- If the module is operating in Multiplexed mode:

Channel 0 =Selected.

Multiplexed channel scanning = Disabled.

Module output = Enabled if the module is cabled to a DAQ device.

If the module is operating in Parallel mode:

All channels = Enabled.

- Gains = 1 on every channel.
- Cutoff frequency = 4.0 Hz on every channel.
- SCXI-1124:

Sets the voltage range for each channel to 0 to 10 V. Writes a binary 0 to each DAC.

#### SCXI-1126:

- Module range = 250 Hz.
- Module filter = 1 Hz.

#### • SCXI-1141, SCXI-1142, and SCXI-1143:

If the module is in Multiplexed mode:

Channel 0 =Selected.

Amplifier gains = 1.

Filters = Bypassed.

MUXed scanning = Disabled.

Module output = Enabled if module is cabled to a DAQ device.

Autozeroing = Disabled.

If the module is in Parallel mode:

All channels = Enabled.

Amplifier gains = 1.

Filters = Bypassed.

Autozeroing = Disabled.

#### • SCXI-1160:

Sets the current state information of relays in memory to unknown. No hardware write takes place.

#### • SCXI-1161:

Initializes all of the relays on the module to the Normally Closed position. It also updates the software copy of the status maintained by the driver.

• SCXI-1163:

Initializes all of the digital output lines on the module to a logical high state.

• SCXI-1163R:

Initializes all of the solid state relays to their open states.

• SCXI-1200:

Sets channel 0 to read from the front panel 50-pin connector and not the SCXIbus. Use Init\_DA\_Brds to completely initialize the hardware and software state of the SCXI-1200.

• SCXI-2400:

Reboots the module. It takes a few seconds for this call to return because it waits for the module to finish booting and attempts to reestablish communication with the module.

## **SCXI** Scale

#### **Format**

status = SCXI\_Scale (SCXIchassisID, moduleSlot, channel, SCXIgain, TBgain, DAQboard, DAQchannel, DAQgain, numPoints, binArray, scaledArray)

## **Purpose**

Scales an array of binary data acquired from an SCXI channel to voltage or frequency. SCXI\_Scale uses stored software calibration constants if applicable for the given module when it scales the data. The SCXI-1101, SCXI-1102, SCXI-1104, SCXI-1112, SCXI-1122, SCXI-1125, SCXI-1126, SCXI-1127, SCXI-1141, SCXI-1142, and SCXI-1143 have default software calibration constants loaded from the module EEPROM; all other analog input modules have no software calibration constants unless you follow the analog input calibration procedure outlined in the SCXI\_Cal\_Constants function description.

### **Parameters**

### Input

| Name          | Туре  | Description                                            |
|---------------|-------|--------------------------------------------------------|
| SCXIchassisID | i16   | chassis ID number                                      |
| moduleSlot    | i16   | module slot number                                     |
| channel       | i16   | SCXI channel from which the data was acquired          |
| SCXIgain      | f64   | SCXI gain or range setting for the channel             |
| TBgain        | f64   | gain applied at SCXI terminal block, if any            |
| DAQboard      | i16   | device number of the DAQ device that acquired the data |
| DAQchannel    | i16   | onboard DAQ channel used in the acquisition            |
| DAQgain       | i16   | DAQ device gain used in the acquisition                |
| numPoints     | u32   | number of data points to scale                         |
| binArray      | [i16] | binary data returned from acquisition                  |

## Output

| Name        | Type  | Description          |
|-------------|-------|----------------------|
| scaledArray | [f64] | array of scaled data |

**channel** is the number of the channel on the SCXI module.

Range: 0 to n-1, where n is the number of channels available on the module.

-1: Scale data acquired from the temperature sensor on the terminal block connected to the module if the temperature sensor is in the MTEMP configuration.

**SCXIgain** is the SCXI module or channel gain or range setting. Valid **SCXIgain** values depend on the module type:

```
SCXI-1100: 1, 2, 5, 10, 20, 50, 100, 200, 500, 1,000, 2,000
SCXI-1101: 1
SCXI-1102: 1, 100
SCXI-1104: 0.1
SCXI-1112: 100
SCXI-1120: 1, 2, 5, 10, 20, 50, 100, 200, 250, 500, 1,000, 2,000
SCXI-1120D: 0.5, 1, 2.5, 5, 10, 25, 50, 100, 250, 500, 1000
SCXI-1121: 1, 2, 5, 10, 20, 50, 100, 200, 250, 500, 1,000, 2,000
SCXI-1122: 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1,000, 2,000
SCXI-1125: 1, 2, 5, 10, 20, 50, 100, 200, 250, 500, 1000, 2000
SCXI-1126: 250, 500, 1,000, 2,000, 4,000, 8,000, 16,000, 32,000, 64,000, 128,000
SCXI-1127: 1
SCXI-1140: 1, 10, 100, 200, 500
SCXI-1141: 1, 2, 5, 10, 20, 50, 100
SCXI-1142: 1, 2, 5, 10, 20, 50, 100
SCXI-1143: 1, 2, 5, 10, 20, 50, 100
```

**TBgain** is the gain applied at the SCXI terminal block. Currently, only the SCXI-1327 terminal block can apply gain to your SCXI module channels; it has DIP switches to choose a gain of 1.0 or 0.01 for each input channel. You can use the SCXI-1327 with the SCXI-1120, SCXI-1120D, and SCXI-1121 modules. For terminal blocks that do not apply gain to your SCXI channels, set **TBgain** = 1.0.

**DAQboard** is the device number of the DAQ device you used to acquire the binary data. This should be the same device number that you passed to the DAQ or SCAN function call, and the same **DAQboard** number you passed to SCXI\_Single\_Chan\_Setup or SCXI\_SCAN\_Setup.

**DAQchannel** is the DAQ device channel number you used to acquire the binary data. This should be the same channel number that you passed to the DAQ or SCAN function call. In most cases, you will multiplex all of your SCXI channels into DAQ device channel 0.

**DAQgain** is the DAQ device gain you used to acquire the binary data. This should be the same gain code that you passed to the DAQ or SCAN function call. In most cases, you will use a DAQ device gain of 1, and set any gain you need at the SCXI module.

**numPoints** is the number of data points you want to scale for the given channel. The **binArray** and **voltArray** parameters must be arrays of a length greater than or equal to **numPoints**. If you acquired data from more than one SCXI channel, you must be careful to pass the number of points for this channel only, not the total number of points you acquired from *all* channels.

binArray is the array of binary data for the given channel. binArray should contain numPoints data samples from the SCXI channel. If you acquired data from more than one SCXI channel, you need to demultiplex the binary data that was returned from the SCAN call before you call SCXI\_Scale. You can use the SCAN\_Demux call to do this. After demuxing the binary data, you should call SCXI\_Scale once for *each* SCXI channel, passing in the appropriate demuxed binary data for each channel.

**scaledArray** is the output array for the scaled voltage or frequency data. **scaledArray** should be at least **numPoints** elements long.

### **Using This Function**

SCXI\_Scale uses the following equation to scale the binary data to voltage:

$$scaledArray[i] = \frac{(binArray[i] - binaryOffset)(voltageResolution)}{(SCXIgain)(TBgain)(DAQgain)(gainAdjust)}$$

The SCXI-1126 scales the binary array to frequency, using the following equation:

```
scaledArray [i] = [(SCXI gain) (binArray – binaryOffset) (voltageResolution)]/[(5 volts) (DAQgain)(gainAdjust)]
```

The *voltageResolution* depends on your DAQ device and its range and polarity settings. For example, the AT-MIO-16E-2 in bipolar mode with an input range of –10 to 10 V has a voltage resolution of 4.88 mV per LSB.

NI-DAQ automatically loads binaryOffset and gainAdjust for the SCXI-1122 and SCXI-1126 for all of its gain settings from the module EEPROM. The SCXI-1122 and SCXI-1126 modules are shipped with factory calibration constants for binaryOffset and gainAdjust loaded in the EEPROM. You can calculate your own calibration constants and store them in the EEPROM and in NI-DAQ memory for SCXI\_Scale to use. Refer to the procedure outlined in the SCXI\_Cal\_Constants function description. The same is true for the SCXI-1141, SCXI-1142, and SCXI-1143, except binaryOffset is not on the module EEPROM and defaults to 0.0. However, you can calculate your own binaryOffset using the procedure outlined in the SCXI\_Cal\_Constants function description.

For other analog input modules, *binaryOffset* defaults to 0.0 and *gainAdjust* defaults to 1.0. However, you can calculate your own calibration constants and store them in NI-DAQ memory for NI-DAQ to use in the SCXI\_Scale function by following the procedure outlined in the SCXI\_Cal\_Constants function description.

## SCXI\_SCAN\_Setup

### **Format**

status = SCXI\_SCAN\_Setup (SCXIchassisID, numModules, moduleList, numChans, startChans, DAQdeviceNumber, modeFlag)

## **Purpose**

Sets up the SCXI chassis for a multiplexed scanning data acquisition to be performed by the given DAQ device.

### **Parameters**

## Input

| Name            | Туре  | Description                                       |
|-----------------|-------|---------------------------------------------------|
| SCXIchassisID   | i16   | chassis ID number                                 |
| numModules      | i16   | number of modules to be scanned                   |
| moduleList      | [i16] | list of module slot numbers                       |
| numChans        | [i16] | how many channels to scan on each module          |
| startChans      | [i16] | contains the start channels for each module       |
| DAQdeviceNumber | i16   | the DAQ device that performs the channel scanning |
| modeFlag        | i16   | scanning mode to be used                          |

### Parameter Discussion

**numModules** is the number of modules to be scanned, and the length of the **moduleList**, **numChans**, and **startChans** arrays.

Range: 1 to 256.

**moduleList** is an array of length **numModules** containing the list of module slot numbers corresponding to the modules to be scanned.

Range: moduleList[i] = 1 to n, where n is the number of slots in the chassis.

Any value in the **moduleList** array that is greater than the number of slots available in the chassis (such as a value of 15 or 16) can act as a dummy entry in the module scan list. Dummy entries are very useful in multichassis scanning operations to indicate in the module scan list when the MIO or AI is scanning channels on another chassis.

**numChans** is an array of length **numModules** that indicates how many channels to scan on each module represented in the **moduleList** array. If the number of channels specified for a module exceeds the number of input channels available on the module, the channel scanning will wrap around after the last input channel and continue with the first input channel. If a module is represented more than once in the **moduleList** array, there can be different **numChans** values for each entry. For the SCXI-1200, this parameter depends entirely on its corresponding **startChans** value.

Range: numChans[i] = 1 to 128.

**startChans** is an array of length **numModules** that contains the start channels for each module represented in the **moduleList** array. If a module is represented more than once in the **moduleList** array, the corresponding elements in the **startChans** array should contain the same value; *there can be only one start channel for each module*.

**startChans**[i] = 0 to n-1, where n is the number of input channels available on the corresponding module, selects the indicated channel as the lowest scanned channel. NI-DAQ will scan a total of **numChans**[i] successive channels starting with this channel, on the module represented by **moduleList**[i].

(SCXI-1101, SCXI-1102, SCXI-1125, SCXI-1127, VXI-SC-1102, and SCXI-1112 only)—**startChans**[i] =  $c + \text{ND\_CJ\_TEMP}$ , where c is a channel number as described above, selects scanning of the temperature sensor on the terminal block followed by successive channels beginning with c. On the SCXI-1112,  $c + \text{ND\_CJ\_TEMP}$  selects the cold-junction sensor for input channel 0 (CJTEMPO). NI-DAQ scans the temperature sensor and then a total of **numChans**[i]-1 successive channels starting with channel c, for a total of **numChans**[i] readings on the module represented by **moduleList**[i].

**startChans**[i] = -1 selects only the temperature sensor on the terminal block; no channels are scanned.

(SCXI-1112 only) **startChans**[i] = -1 to -n, where n is the number of input channels available on the corresponding module, selects the CJTEMP sensor corresponding to analog input channel (-startChans[i]) -1. For example, -1 selects the CJTEMP channel on channel 0, -2 selects the CJTEMP channel on channel 1, and so on. No channels are scanned.

Keep in mind that if you use −1 to select the temperature sensor, all readings from that module will be readings of the temperature sensor only; channel scanning is not possible.

**DAQdeviceNumber** is the device number of the DAQ device that will perform the channel scanning operation. If you are using the SCXI-1200 to perform the data acquisition, you should specify the module logical device number.

**modeFlag** indicates the scanning mode to be used. Only one scanning mode is currently supported, so you should always set this parameter to zero.

## **Using this Function**

You can scan modules in any order; however, you must scan channels on each module in consecutive order. This function downloads a module scan list to Slot 0 in the SCXI chassis that determines the sequence of modules to be scanned and how many channels on each module NI-DAQ will scan. NI-DAQ programs each module with its given start channel and resolves any contention on the SCXIbus.

# SCXI\_Set\_Config

### **Format**

status = SCXI\_Set\_Config (SCXIchassisID, chassisType, chassisAddress, commMode, commPath, numSlots, modulesPresent, operatingModes, connectionMap)

### **Purpose**

Changes the software configuration of the SCXI chassis that you established in Measurement & Automation Explorer. Sets the software states of the chassis and the modules specified to their default states. This function makes no changes to the hardware state of the SCXI chassis or modules.



**Note** You cannot use this function to configure a chassis that contains an SCXI-1200.

### **Parameters**

### Input

| Name           | Туре  | Description                                                            |
|----------------|-------|------------------------------------------------------------------------|
| SCXIchassisID  | i16   | chassis ID number                                                      |
| chassisType    | i16   | type of SCXI chassis                                                   |
| chassisAddress | i16   | hardware-jumpered address                                              |
| commMode       | i16   | communication mode used                                                |
| commPath       | i16   | communication path used                                                |
| numSlots       | i16   | number of plug-in module slots                                         |
| modulesPresent | [i32] | type of module present in each slot                                    |
| operatingModes | [i16] | the operating mode of each module                                      |
| connectionMap  | [i16] | describes the connections between the SCXI chassis and the DAQ devices |

## **Parameter Discussion**

chassisType indicates what type of SCXI chassis is configured for the given SCXIchassisID.

- 0: SCXI-1000 4-slot chassis.
- 1: SCXI-1001 12-slot chassis.
- 2: SCXI-2000 (remote SCXI).

- 3: VXI-SC-1000 carrier module.
- PXI-1010 chassis.

**chassisAddress** is the hardware jumpered address of an SCXI chassis.

Range: 0 to 31.

**commMode** is the communication mode that is used when the driver communicates with the SCXI chassis and modules.

- 0: Communication mode is disabled. In effect, this disables the chassis.
- 1: Enables serial communication through a digital port of a DAQ device that is cabled to a module in the chassis.
- Enables serial communication through the parallel port cabled to an SCXI-1200 in the chassis.
- 4: Enables serial communication over the VXI backplane.
- 5: Enables serial communication through a digital port of a DAQ device internally connected to the SCXIbus of a PXI-1010 or PXI-1011 chassis.

**commPath** is the communication path that is used when the driver communicates with the SCXI chassis and modules. When **commMode** = 1, 2, 4, or 5, set the path to the device number of the DAQ device that is the designated communicator for the chassis. If only one DAQ device is connected to the chassis, set **commPath** to the device number of that device. If more than one DAQ device is connected to modules in the chassis, you must designate one device as the communicator device, and you should set its device number to **commPath**. If **commMode** is 1 or 2, refer to the **connectionMap** array description; you should set **commPath** to one of the device numbers specified in that array. When **commMode** = 0, NI-DAQ ignores **commPath**.

**numSlots** is the number of plug-in module slots in the SCXI chassis.

- 4: For the SCXI-1000 and PXI-1010 chassis.
- 8: For the PXI-1011 chassis.
- 12: For the SCXI-1001 chassis.

**modulesPresent** is an array of length **numSlots** that indicates what type of module is present in each slot. The first element of the array corresponds to slot 1 of the chassis, and so on.

- -1: Empty slot; there is no module present in the corresponding slot.
  - 1: SCXI-1126.
  - 2: SCXI-1121.
  - 4: SCXI-1120.
  - 5: SCXI-1127.
- 6: SCXI-1100.
- 8: SCXI-1140.
- 10: SCXI-1122.
- 12: SCXI-1160.
- 13: SCXI-1125.
- 14: SCXI-1161.

- 16: SCXI-1162.
- 18: SCXI-1163.
- 20: SCXI-1124.
- 22: SCXI-1101.
- 24: SCXI-1162HV.
- 28: SCXI-1163R.
- 30: SCXI-1102.
- 32: SCXI-1141.
- 33: SCXI-1112.
- 42: VXI-SC-1102.
- 44: VXI-SC-1150.
- 45: SCXI-1104.
- 64: SCXI-1143.
- 68: SCXI-1120D.
- 96: SCXI-1142.

Any other value for an element of the **modulesPresent** array indicates that a module that is unfamiliar to NI-DAQ (such as a custom-built module) is present in the corresponding slot.

**operatingModes** is an array of length **numSlots** that indicates the operating mode of each module in the **modulesPresent** array—multiplexed or parallel. Refer to Chapter 13, *SCXI Hardware*, of the *DAQ Hardware Overview Guide* for an explanation of each operating mode. If any of the slots are empty (indicated by a value of –1 in the corresponding element of the **modulesPresent** array), NI-DAQ ignores the corresponding element in the **operatingModes** array.

- 0: Multiplexed operating mode.
- 1: Parallel operating mode.
- 2: Parallel operating mode using the secondary connector of the DAQ device.

**connectionMap** is an array of length **numSlots** that describes the connections between the SCXI chassis and the DAQ devices in the PC. For each module present in the chassis, you must specify the device number of the DAQ device that is cabled to the module, if there is one. For the SCXI-1200 module, you should specify the logical device number of the module. If any of the slots are empty (indicated by a value of –1 in the corresponding element of the **modulesPresent** array), NI-DAQ ignores the corresponding element of the **connectionMap** array. The **commPath** parameter value must be one of the DAQ device numbers specified in this array.

- 0: No DAQ device is cabled to the module.
- *n*: where *n* is the device number of the DAQ device cabled to the module.

## **Using This Function**

The configuration information that was saved to disk by Measurement & Automation Explorer remains unchanged; this function changes only the configuration in the current application. Any subsequent calls to SCXI\_Load\_Config reloads the configuration from Measurement & Automation Explorer.

Remember, the hardware state of the chassis is not affected by this function; you should use the SCXI\_Reset function to reset the hardware states. Refer to the SCXI\_Reset function description for a listing of the default states of the chassis and modules.

## **SCXI Set Gain**

### **Format**

status = SCXI\_Set\_Gain (SCXIchassisID, moduleSlot, channel, gain)

### **Purpose**

Sets the specified channel to the given gain or range setting on any SCXI module that supports programmable gain settings. Currently, the SCXI-1100, SCXI-1102, VXI-SC-1102, SCXI-1122, SCXI-1125, SCXI-1126, SCXI-1141, SCXI-1142, and SCXI-1143 have programmable gains; the other analog input modules have hardware-selectable gains.

### **Parameters**

### Input

| Name          | Туре | Description           |
|---------------|------|-----------------------|
| SCXIchassisID | i16  | chassis ID number     |
| moduleSlot    | i16  | module slot number    |
| channel       | i16  | module channel        |
| gain          | f64  | gain or range setting |

### Parameter Discussion

**channel** is the module channel you want to change the gain or range setting for. If **channel** = -1, SCXI\_Set\_Gain changes the gain or range for all channels on the module. The SCXI-1100 and SCXI-1122 have one gain amplifier, so all channels have the same gain setting; therefore, you must set **channel** = -1 for those modules.

**gain** is the gain or range setting you want to use. Notice that **gain** is a double-precision floating point parameter. Valid gain settings depend on the module type:

SCXI-1100: 1, 2, 5, 10, 20, 50, 100, 200, 500, 1,000, 2,000

SCXI-1102/VXI-SC-1102: 1, 100

SCXI-1122: 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1,000, 2,000

SCXI-125: 1, 2, 5, 10, 20, 50, 100, 200, 250, 500, 1000, 2000

SCXI-1126: 250, 500, 1,000, 2,000, 4,000, 8,000, 16,000, 32,000, 64,000, 128,000

SCXI-1141, SCXI-1142, SCXI-1143: 1, 2, 5, 10, 20, 50, 100



**Note** When used with the SCXI-1102 module, this function will not return until the gain amplifier of the module is settled to within 0.01% upon a gain change. This may result in a noticeable amount of delay.

# **SCXI** Set Input Mode

#### **Format**

status = SCXI\_Set\_Input\_Mode (SCXIchassisID, moduleSlot, inputMode)

## **Purpose**

Configures the SCXI-1122 channels for two-wire mode or four-wire mode.

### **Parameters**

### Input

| Name          | Туре | Description                      |
|---------------|------|----------------------------------|
| SCXIchassisID | i16  | chassis ID number                |
| moduleSlot    | i16  | module slot number               |
| inputMode     | i16  | channel input mode configuration |

Chapter 2

### **Parameter Discussion**

inputMode is the channel configuration you want to use.

0: two-wire mode (module default).

1: four-wire mode.

## **Using This Function**

When the SCXI-1122 is in two-wire mode (module default setting), the module is configured for 16 differential input channels.

When the SCXI-1122 is in four-wire mode, channels 0 through 7 are configured to be differential input channels, and channels 8 through 15 are configured to be current excitation channels. The SCXI-1122 has a current excitation source that will switch to drive the corresponding excitation channel 8 through 15 whenever you select an input channel 0 through 7. Channel 8 produces the excitation when you select input channel 0, channel 9 produces the excitation when you select input channel 1, and so on. You can use four-wire mode for single point data acquisition, or for multiple channel scanning acquisitions. During a multiple channel scan, the excitation channels switch simultaneously with the input channels.

You can hook up a resistive temperature device (RTD) or thermistor to your input channel that uses the corresponding excitation channel to drive the transducer.

You can call the SCXI\_Set\_Input\_Mode function to enable four-wire mode at any time before you start the acquisition; you can call SCXI\_Set\_Input\_Mode again after the acquisition to return the module to normal two-wire mode.

## **SCXI** Set State

### **Format**

status = SCXI\_Set\_State (SCXIChassisID, moduleSlot, port, channel, data)

## **Purpose**

Sets the state of a single channel or an entire port on a digital output or relay module.

### **Parameters**

### Input

| Name          | Туре | Description                                                                                 |
|---------------|------|---------------------------------------------------------------------------------------------|
| SCXIChassisID | i16  | chassis ID number                                                                           |
| moduleSlot    | i16  | module slot number                                                                          |
| port          | i16  | port of the module to write to (all current modules support only port 0)                    |
| channel       | i16  | the channel on the specified port to change                                                 |
| data          | u32  | contains new state information for a single channel or a digital pattern for an entire port |

### **Parameter Discussion**

**port** is the port number of the module to be written to. Currently, all of the SCXI modules support only port 0.

**channel** is the channel number on the specified port. Because all of the modules support only Port 0, **channel** maps to the actual channel on the module. If **channel** = -1, the function writes the pattern in **data** to the entire port.

*n*: Write to a single channel.

SCXI-1160:  $0 \le n < 16$ .

SCXI-1161:  $0 \le n < 8$ .

SCXI-1163:  $0 \le n < 32$ .

SCXI-1163R:  $0 \le n < 32$ .

-1: Write to an entire port.

When **channel** = -1, **data** contains the pattern of an entire port. Bit 0 corresponds to the state of channel 0 in the port, and the states of the other channels are represented in ascending order in **data** so that bit *n* corresponds to channel *n*. If the port is less than 32 bits wide, the unused bits in **data** are ignored.

When **channel** = n, the LSB (bit 0) of **data** contains the state of channel n on the specified port.

For relay modules, a 0 bit indicates that the relay is closed or in the normally closed position, and a 1 indicates that the module is open or in the normally open position. For SCXI digital modules, a 0 bit indicates that the line is low, and a 1 bit indicates that the line is high.



Note For a discussion of the NC and NO positions, see your SCXI module user manual.

## **Using This Function**

Because the relays on the SCXI-1160 module have a finite lifetime, the driver maintains a software copy of the relay states as you write to them; this allows the driver to excite the relays only when you specify a new relay state. If you call this function to specify the current relay state again, NI-DAQ will not excite the relay again. When the SCXI-1160 powers up, the relays remain in the same position as they were at power down. However, when you start an application, the driver does not know the states of the relays; it will excite all of the relays the first time you write to them and then remember the states for the remainder of the application. When you call the SCXI\_Reset function, the driver marks all relay states as unknown.

The SCXI-1161 powers up with its relays in the NC position. The SCXI-1163 powers up with its output lines high when you operate the module in Multiplexed mode. The SCXI-1163R powers up with relays open. If you operate the SCXI-1163 or 1163R in Parallel mode, the states of the output lines or relays are determined by the states of the corresponding lines on the DAQ device.

## **SCXI** Set Threshold

### **Format**

status = SCXI\_Set\_Threshold (SCXIChassisID, moduleSlot, channel, level, hysteresis)

## **Purpose**

Sets the high and low threshold values for the SCXI-1126 frequency-to-voltage module.

### **Parameters**

### Input

| Name          | Туре | Description                                                        |
|---------------|------|--------------------------------------------------------------------|
| SCXIchassisID | i16  | chassis ID number                                                  |
| moduleSlot    | i16  | module slot number                                                 |
| channel       | i16  | analog input channel                                               |
| level         | f64  | specifies the average of the desired high and low threshold values |
| hysteresis    | f64  | the difference between the high and low threshold values           |

### Parameter Discussion

**channel** is the number of the channel on the module.

Range: 0 to n-1, where n is the number of channels available on the module.

−1: For all channels on the modules.

**level** is the middle of the window between the high and low threshold values. For example, to set a low threshold of 1.0 V and a high threshold of 3.0 V, you would specify a **level** of (1.0 + 3.0)/2 = 2.0 V. **level** should be between -0.5 and 4.48 V.

**hysteresis** is the size of the window between high and low threshold values. The low threshold value plus hysteresis equals the high threshold value. For example, for a low threshold value of 1.0 V and a high threshold value of 3.0 V, you would specify a **hysteresis** of 3.0 - 1.0 = 2.0 V. **hysteresis** should be between 0 and 4.98 V.

## **Using This Function**

Currently, only the SCXI-1126 supports this function. The SCXI-1126 uses the high and low threshold values to transform a periodic input signal into a square wave with the same frequency. When the input signal rises above the high threshold value, the square wave triggers high. When the input signal falls below the low threshold value, the square wave

triggers low. The SCXI-1126 module uses the square wave to produce a corresponding voltage that is proportional to the frequency of the original input signal.

The threshold values determines which part of the input signal to count, and which part to ignore. For example, a large **hysteresis** setting keeps signal noise from adding to the frequency of a signal. A small **hysteresis** and a properly chosen value for **level** enables the SCXI-1126 to count almost every part of the input signal.

# SCXI\_Single\_Chan\_Setup

### **Format**

status = SCXI\_Single\_Chan\_Setup (SCXIchassisID, moduleSlot, moduleChan, DAQdeviceNumber)

## **Purpose**

Sets up a multiplexed module for a single channel analog input operation to be performed by the given DAQ device. Sets the module channel, enables the module output, and routes the module output on the SCXIbus if necessary. Resolves any contention on the SCXIbus by disabling the output of any module that was previously driving the SCXIbus. You also can use this function to set up to read the temperature sensor on a terminal block connected to the front connector of the module.

### **Parameters**

### Input

| Name            | Туре | Description                                                    |
|-----------------|------|----------------------------------------------------------------|
| SCXIchassisID   | i16  | chassis ID number                                              |
| moduleSlot      | i16  | module slot number                                             |
| moduleChan      | i16  | channel number of the input channel on the module              |
| DAQdeviceNumber | i16  | device number of the DAQ device used to read the input channel |

### Parameter Discussion

moduleChan is the channel number of the input channel on the module that is to be read.

Range: 0 to n-1, where n is the number of input channels on the module.

-1: Set up to read the temperature sensor on the terminal block connected to the module if the temperature sensor is in the MTEMP configuration.

(SCXI-1112 only) c = -1 to (-n), where n is the number of analog input channels on the module. This number selects the CJTEMP channel on the analog input channel (-c) -1; that is, -1 selects the CJTEMP channel on channel 0, -2 selects the CJTEMP channel on channel 1, and so on.

**DAQdeviceNumber** is the device number of the DAQ device that performs the analog input. If you use the SCXI-1200 to perform the analog input, you should specify the module logical device number.

### **Format**

status = SCXI\_Track\_Hold\_Control (SCXIchassisID, moduleSlot, state, DAQdeviceNumber)

Chapter 2

### **Purpose**

Controls the track/hold state of an SCXI-1140 module that you have set up for a single-channel operation.



**Note** This function is not supported for the E Series devices.

### **Parameters**

### Input

| Name            | Туре | Description                                                    |
|-----------------|------|----------------------------------------------------------------|
| SCXIchassisID   | i16  | chassis ID number                                              |
| moduleSlot      | i16  | module slot number                                             |
| state           | i16  | track or hold mode                                             |
| DAQdeviceNumber | i16  | device number of the DAQ device used to read the input channel |

### Parameter Discussion

**moduleSlot** is the module slot number of the SCXI-1140 module you want.

Range: 1 to n, where n is the number of slots in the chassis.

**state** indicates whether to put the module into track or hold mode.

0: Put the module into track mode.

1: Put the module into hold mode.

**DAQdeviceNumber** is the device number of the DAQ device that performs the channel scanning operation. If you are using the SCXI-1200 to perform the data acquisition, you should specify the module logical device number.

## **Using This Function**

Refer to the *SCXI Application Hints* discussion in Chapter 3, *Software Overview*, of the *NI-DAQ User Manual for PC Compatibles* for information about how to use the SCXI-1140 for single-channel and channel-scanning operations. This function is only needed for single-channel applications; the scan interval timer controls the track/hold state of the module

during a channel-scanning operation. The *NI-DAQ User Manual for PC Compatibles* contains flowcharts for single-channel operations using the SCXI-1140 and this function.

## SCXI\_Track\_Hold\_Setup

### **Format**

status = SCXI\_Track\_Hold\_Setup (SCXIchassisID, moduleSlot, inputMode, source, send, holdCount, DAQdeviceNumber)

## **Purpose**

Establishes the track/hold behavior of an SCXI-1140 module and sets up the module for either a single-channel operation or an interval-scanning operation.

### **Parameters**

## Input

| Name            | Туре | Description                                                                                           |
|-----------------|------|-------------------------------------------------------------------------------------------------------|
| SCXIchassisID   | i16  | chassis ID number                                                                                     |
| moduleSlot      | i16  | module slot number                                                                                    |
| inputMode       | i16  | type of analog input operation                                                                        |
| source          | i16  | indicates which signal will control the track/hold state                                              |
| send            | i16  | where else to send the signal specified by source                                                     |
| holdCount       | i16  | number of times the module is enabled during<br>an interval scan before going back into track<br>mode |
| DAQdeviceNumber | i16  | device number of the DAQ device used                                                                  |

### **Parameter Discussion**

**inputMode** indicates what type of analog input operation.

- 0: None; frees any resources that were previously reserved for the module (such as a DAQ device counter or an SCXIbus trigger line).
- 1: Single-channel operation.
- 2: Interval channel-scanning operation (only supported if the **DAQdeviceNumber** specified is an MIO or AI device, Lab-PC-1200, Lab-PC-1200AI, Lab-PC+, SCXI-1200, or DAQCard-1200).

**source** indicates what signal controls the track/hold state of the module. If the **inputMode** is 0, NI-DAQ ignores this parameter.

- 0: A counter of the DAQ device that is cabled to the module will be the source (NI-DAQ reserves and uses Am9513-based device counter 2, an E Series dedicated DAQ-STC counter, Lab and 1200 Series devices counter B1, DAQCard-700 or LPM device counter 2 for this purpose). This source is only valid if the module is cabled to a DAQ device.
- 1: An external signal connected to the HOLDTRIG pin on the front connector of the module will control the track/hold state of the module. There is a hardware connection between the HOLDTRIG pin and the counter output of the DAQ device, so if **source** = 1 the appropriate counter (listed above) is driven by the external signal and will be reserved. Keep in mind that if **inputMode** = 2, this external signal will drive the scan interval timer. If you are using a Lab and 1200 Series devices, DAQCard-700, or LPM device, you must change the jumper setting on the SCXI-1341 or SCXI-1342 adapter device to prevent the external signal from damaging the timer chip on the DAQ device.
- 2: NI-DAQ will use a signal routed on an SCXIbus trigger line to control the track/hold state of the module. If you are using an SCXI-1200 or the internal connection to the SCXI backplane on the PXI-1010 or PXI-1011, you must use this option to route the trigger signal from the backplane.

**send** indicates where else to send the signal specified by source for synchronization purposes. NI-DAQ also ignores this parameter if the **inputMode** is 0.

- 0: Nowhere.
- 1: Make the source signal drive the DAQ device counter output and the HOLDTRIG pin on the module front connector (if the source is not already one of those signals). If you are using a DAQCard-700, DAQCard-1200, Lab-PC-1200, Lab-PC-1200AI, Lab-PC+, PCI-1200, or LPM device, you must change the jumper setting on the SCXI-1341 or SCXI-1342 adapter device to prevent the external signal from damaging the timer chip on the DAQ device.
- 2: Make the **source** signal drive an SCXIbus trigger line so that other SCXI-1140 modules can use it (if the **source** is not from the SCXIbus). Only one SCXI-1140 module can drive that trigger line; an error occurs if you attempt to configure more than one SCXI-1140 to drive it.

**holdCount** is the number of times the module is enabled by NI-DAQ during an interval scan before going back into track mode. Each time Slot 0 encounters an entry for the module in the module scan list, NI-DAQ enables the module, which remains enabled until the sample count in that module scan list entry expires. If there is only one entry for the module in the module scan list, **holdCount** should be 1 (this is almost always the case).

Range: 1 to 255.

**DAQdeviceNumber** is the device number of the DAQ device in the PC that will be used to acquire the data. If the **DAQdeviceNumber** specified is a Lab and 1200 Series devices, DAQCard-700, or LPM device, **inputMode** 2 is not supported. If you are using the SCXI-1200 to acquire the data, use the logical device number you assigned to the SCXI-1200 in Measurement & Automation Explorer.

## **Using This Function**

For single channel operations (**inputMode** = 1) the module is level-sensitive to the **source** signal; that is, when the **source** signal is low the module is in track mode, and when the **source** signal is high the module is in hold mode. If **source** = 0, you can use calls to SCXI\_Track\_Hold\_Control function to put the module into track or hold mode by toggling the output of the appropriate counter on the DAQ device. If the SCXI-1140 you want to read is not cabled to the DAQ device, you have to configure the SCXI-1140 module that *is* cabled to the DAQ device to send the counter output on the SCXIBus to the module you want. Then the SCXI\_Track\_Hold\_Control call can put the module you want into track or hold mode. The SCXI\_Track\_Hold\_Setup parameters for each module would be:

• For the SCXI-1140 that is cabled to the DAQ device as follows:

```
inputMode = 1
source = 0
send = 2
```

• For the SCXI-1140 module to be read:

```
inputMode = 1

source = 2

send = 0
```

Using an external **source** (**source** = 1) for single channel operations is not normally useful because NI-DAQ has no way of determining when the module has gone into hold mode and it is appropriate to read the channels.

(MIO, Lab-PC-1200, Lab-PC-1200AI, Lab-PC+, PCI-1200, SCXI-1200, and DAQCard-1200 only) For interval channel scanning operations (**inputMode** = 2) NI-DAQ configures the module to go into hold mode on the rising edge of the **source** signal. If **source** = 0, that will happen when counter 2 on the Am9513-based MIO devices, a dedicated DAQ-STC counter on E Series devices, or counter B1 on the Lab-PC-1200, Lab-PC-1200AI, Lab-PC+, PCI-1200, SCXI-1200, or DAQCard-1200 pulses at the beginning of each scan interval; if **source** = 1, that will happen on the rising edge of the external signal connected to HOLDTRIG on the module front connector. In the latter case, you should configure the DAQ device for external scan interval timing (using the DAQ\_Config function) so that the external signal triggers each scan. To scan more than one SCXI-1140, you can send the **source** signal from the module that is receiving it (either from the counter or from HOLDTRIG) to the other modules over the SCXIbus. Notice that the module that is cabled to the device can receive the **source** signal from the SCXIbus and drive the scan interval timer of the DAQ device, if you

want; or the module can use the DAQ device counter output and send the signal on the SCXIbus, *even if that module is not in the module scan list*.

For example, you want to scan two SCXI-1140 modules; one of which is cabled to the DAQ device that is to perform the acquisition. An external signal connected to the HOLDTRIG pin of the module that is *not* cabled to the DAQ device is to control the track/hold state of both modules and the scan interval during the acquisition. The SCXI\_Track\_Hold\_Setup parameters would be as follows:

For the SCXI-1140 that is cabled to the DAQ device:

```
inputMode = 2
source = 2
send = 1
```

• For the other SCXI-1140 module to be scanned:

```
inputMode = 2
source = 1
send = 2
```

Remember to call the DAQ\_Config function to enable external scan interval timing whenever the **source** signal of a module will be driving the scan interval counter, as in the previous example.

The module returns to track mode after *n* module scan list entries for that module have occurred, where *n* is the **holdCount**. Usually, each module is represented in the module scan list only once, so a **holdCount** of one is appropriate. However, if an SCXI-1140 module is represented more than once in the module scan list and you want the module to remain in hold mode until after the last scan list entry for that module, you need to set the module **holdCount** to equal the number of times the module is represented in the module scan list.

# Select\_Signal

#### **Format**

status = Select\_Signal (deviceNumber, signal, source, sourceSpec)

### **Purpose**

Chooses the source and polarity of a signal that the device uses (E Series, 671X, NI 5411, and DSA devices only).

#### **Parameters**

#### Input

| Name         | Туре | Description                                               |
|--------------|------|-----------------------------------------------------------|
| deviceNumber | i16  | assigned by configuration utility                         |
| signal       | u32  | signal to select the source and polarity                  |
| source       | u32  | the source of the signal                                  |
| sourceSpec   | u32  | further signal specification (the polarity of the signal) |

## Parameter Discussion for the E Series, 671X, NI 5411, and DSA Devices

Legal ranges for the **signal**, **source**, and **sourceSpec** parameters are given in terms of constants that are defined in a header file. The header file you should use depends on which of the following languages you are using:

- C programmers—NIDAQCNS.H (DATAACQ.H for LabWindows/CVI)
- BASIC programmers—NIDAQCNS.INC (Visual Basic for Windows programmers should refer to the *Programming Language Considerations* section in Chapter 1, *Using the NI-DAQ Functions*, for more information.)
- Pascal programmers—NIDAQCNS.PAS

You can use the onboard DAQ-STC to select among many sources for various signals.

**signal** specifies the signal whose source you want to select. Table 2-30 shows the possible values for **signal**.



**Note** The ND\_OUT\_START\_TRIGGER, ND\_OUT\_UPDATE, and ND\_UPDATE\_CLOCK\_TIMEBASE values do not apply to the AI E Series devices.

#### DSA devices do not support the following signals:

- ND\_OUT\_UPDATE
- ND\_PLL\_REF\_SOURCE
- ND\_IN\_SCAN\_CLOCK\_TIMEBASE
- ND\_IN\_CHANNEL\_CLOCK\_TIMEBASE
- ND\_IN\_CONVERT
- ND\_IN\_SCAN\_START
- ND\_IN\_EXTERNAL\_GATE
- ND\_OUT\_EXTERNAL\_GATE
- ND\_OUT\_UPDATE\_CLOCK\_TIMEBASE

#### 445*X* devices do not support the following signals:

- ND\_PFI\_2
- ND\_PFI\_5



**Note** On the PCI-4453 and PCI-4454, signals associated with I/O connector pins can be used. However, they are not available on the I/O connector.

Table 2-30. Possible Values for signal

| Group                                        | Signal                       | Description                                                      |
|----------------------------------------------|------------------------------|------------------------------------------------------------------|
| Timing and<br>Control                        | ND_IN_START_TRIGGER          | Start trigger for the DAQ and SCAN functions                     |
| Signals Used<br>Internally by<br>the Onboard | ND_IN_STOP_TRIGGER           | Stop trigger for the DAQ and SCAN functions                      |
| DAQ-STC                                      | ND_IN_SCAN_CLOCK_TIMEBASE    | Scan clock timebase for the SCAN functions                       |
|                                              | ND_IN_CHANNEL_CLOCK_TIMEBASE | Channel clock timebase for the DAQ and SCAN functions            |
|                                              | ND_IN_CONVERT                | Convert signal for the AI, DAQ and SCAN functions                |
|                                              | ND_IN_SCAN_START             | Start scan signal for the SCAN functions                         |
|                                              | ND_IN_EXTERNAL_GATE          | External gate signal for the DAQ and SCAN functions              |
|                                              | ND_OUT_START_TRIGGER         | Start trigger for the WFM functions                              |
|                                              | ND_OUT_UPDATE                | Update signal for the AO and WFM functions                       |
|                                              | ND_OUT_UPDATE_CLOCK_TIMEBASE | Update clock timebase for the WFM functions                      |
|                                              | ND_PLL_REF_SOURCE            | Phase-locked loop (PLL) reference clock source for WFM functions |
|                                              | ND_OUT_EXTERNAL_GATE         | External gate signal for the WFM functions                       |

Group Signal **Description** I/O Connector ND\_PFI\_0 through PFI\_9 Signal present at the I/O connector Pins pin PFI0 through PFI9. ND\_GPCTR0\_OUTPUT Signal present at the I/O connector pin GPCTR0\_OUTPUT Signal present at the I/O connector ND\_GPCTR1\_OUTPUT pin GPCTR1\_OUTPUT ND FREO OUT Signal present at the FREQ\_OUT output pin on the I/O connector ND\_SCANCLK\_LINE Signal present at the SCANCLK output pin on the I/O connector. RTSI Bus ND\_RTSI\_0 through ND\_RTSI\_6 Signal present at the RTSI bus trigger Signals line 0 through 7 ND\_RTSI\_CLOCK Enable the device to drive the RTSI clock line or prevent it from doing it Enable the device to receive the clock ND\_BOARD\_CLOCK signal from the RTSI clock line or stop it from doing so

**Table 2-30.** Possible Values for **signal** (Continued)

Legal values for **source** and **sourceSpec** depend on the **signal** and are shown in the following tables.

signal = ND\_IN\_START\_TRIGGER

| source                      | sourceSpec                        |
|-----------------------------|-----------------------------------|
| ND_PFI_0 through ND_PFI_9   | ND_LOW_TO_HIGH and ND_HIGH_TO_LOW |
| ND_RTSI_0 through ND_RTSI_6 | ND_LOW_TO_HIGH and ND_HIGH_TO_LOW |
| ND_GPCTR0_OUTPUT            | ND_LOW_TO_HIGH and ND_HIGH_TO_LOW |
| ND_AUTOMATIC                | ND_DONT_CARE                      |
| ND_ATC_OUT                  | ND_DONT_CARE                      |

Use ND\_IN\_START\_TRIGGER to initiate a data acquisition sequence. You can use an external signal or output of general-purpose counter 0 as a source for this signal, or you can specify that NI-DAQ generates it (corresponds to **source** = ND\_AUTOMATIC).

If you do not call this function with  $signal = ND_IN_START_TRIGGER$ , NI-DAQ uses the default values,  $source = ND_AUTOMATIC$  and  $sourceSpec = ND_LOW_TO_HIGH$ .

If you call DAQ\_Config with **startTrig** = 1, NI-DAQ calls Select\_Signal function with **signal** = ND\_IN\_START\_TRIGGER, **source** = ND\_PFI\_0, and **sourceSpec** = ND\_HIGH\_TO\_LOW.

If you call DAQ\_Config with startTrig = 0, NI-DAQ calls Select\_Signal function with  $signal = ND_IN_START_TRIGGER$ ,  $source = ND_AUTOMATIC$ , and  $sourceSpec = ND_DONT_CARE$ .

signal = ND\_IN\_STOP\_TRIGGER

| source                      | sourceSpec                        |
|-----------------------------|-----------------------------------|
| ND_PFI_0 through ND_PFI_9   | ND_LOW_TO_HIGH and ND_HIGH_TO_LOW |
| ND_RTSI_0 through ND_RTSI_6 | ND_LOW_TO_HIGH and ND_HIGH_TO_LOW |

Use ND\_IN\_STOP\_TRIGGER for data acquisition in the pretriggered mode. The selected transition on the **signal** line indicates to the device that it should acquire a specified number of scans after the trigger and stop.

If you do not call this function with **signal** = ND\_IN\_STOP\_TRIGGER, NI-DAQ uses the default values, **source** = ND\_PFI\_1 and **sourceSpec** = ND\_HIGH\_TO\_LOW. By default, ND\_IN\_STOP\_TRIGGER is not used because the pretriggered mode is disabled.

If you call DAQ\_StopTrigger\_Config with **startTrig** = 1, NI-DAQ calls Select\_Signal function with **signal** = ND\_IN\_STOP\_TRIGGER, **source** = ND\_PFI\_1, and **sourceSpec** = ND\_HIGH\_TO\_LOW. Therefore, to use different selection for ND\_IN\_STOP\_TRIGGER, you need to call the Select\_Signal function after DAQ\_StopTrigger\_Config.

signal = ND\_IN\_EXTERNAL\_GATE

| source                      | sourceSpec                           |
|-----------------------------|--------------------------------------|
| ND_PFI_0 through ND_PFI_9   | ND_PAUSE_ON_HIGH and ND_PAUSE_ON_LOW |
| ND_RTSI_0 through ND_RTSI_6 | ND_PAUSE_ON_HIGH and ND_PAUSE_ON_LOW |
| ND_NONE                     | ND_DONT_CARE                         |

Use ND\_IN\_EXTERNAL\_GATE for gating the data acquisition. For example, if you call this function with **signal** = ND\_IN\_EXTERNAL\_GATE, **source** = ND\_PFI\_9, and **sourceSpec** = PAUSE\_ON\_HIGH, the data acquisition is paused whenever the PFI 9 is at the high level. The pause is performed on a per scan basis, so no scans are split by the external gate.

If you do not call this function with **signal** = ND\_IN\_EXTERNAL\_GATE, NI-DAQ uses the default values, **source** = ND\_NONE and **sourceSpec** = ND\_DONT\_CARE; therefore, by default, the data acquisition is not gated.

signal = ND\_IN\_SCAN\_START

| source                      | sourceSpec                        |
|-----------------------------|-----------------------------------|
| ND_PFI_0 through ND_PFI_9   | ND_LOW_TO_HIGH and ND_HIGH_TO_LOW |
| ND_RTSI_0 through ND_RTSI_6 | ND_LOW_TO_HIGH and ND_HIGH_TO_LOW |
| ND_GPCTR0_OUTPUT            | ND_LOW_TO_HIGH and ND_HIGH_TO_LOW |
| ND_INTERNAL_TIMER           | ND_LOW_TO_HIGH                    |

Use this signal for scan timing. You can use a DAQ-STC timer for timing the scans, or you can use an external signal. You can also use the output of the general-purpose counter 0 for scan timing. This can be useful for applications such as Equivalent Time Sampling (ETS).

If you do not call this function with **signal** = ND\_IN\_SCAN\_START, NI-DAQ uses the default values, **source** = ND\_INTERNAL\_TIMER and **sourceSpec** = ND\_LOW\_TO\_HIGH.

If you call DAQ\_Config with extConv = 2 or 3, NI-DAQ calls Select\_Signal function with  $signal = ND_IN_SCAN_START$ ,  $source = ND_PFI_7$ , and  $sourceSpec = ND_HIGH_TO_LOW$ .

If you call DAQ\_Config with extConv = 0 or 1, NI-DAQ calls Select\_Signal function with  $signal = \text{ND}_IN\_SCAN\_START$ ,  $source = \text{ND}_INTERNAL\_TIMER$ , and  $sourceSpec = \text{ND}_LOW\_TO\_HIGH$ .

signal = ND\_IN\_CONVERT

| source                      | sourceSpec                        |
|-----------------------------|-----------------------------------|
| ND_PFI_0 through ND_PFI_9   | ND_LOW_TO_HIGH and ND_HIGH_TO_LOW |
| ND_RTSI_0 through ND_RTSI_6 | ND_LOW_TO_HIGH and ND_HIGH_TO_LOW |
| ND_GPCTR0_OUTPUT            | ND_LOW_TO_HIGH and ND_HIGH_TO_LOW |
| ND_INTERNAL_TIMER           | ND_LOW_TO_HIGH                    |

Use ND\_IN\_CONVERT for sample (channel interval) timing. This signal controls the onboard ADC. You can use a DAQ-STC timer for timing the samples, or you can use an external signal. You can also use output of the general-purpose counter 0 for sample timing.

If you call the AI\_Check function or DAQ\_Config with **extConv** = 1 or 3, NI-DAQ calls Select\_Signal function with **signal** = ND\_IN\_CONVERT, **source** = ND\_PFI\_2, and **sourceSpec** = ND\_HIGH\_TO\_LOW.

If you call DAQ\_Config with extConv = 0 or 2, NI-DAQ calls Select\_Signal function with  $signal = \text{ND}_IN_CONVERT$ ,  $source = \text{ND}_INTERNAL_TIMER$ , and  $sourceSpec = \text{ND}_LOW_TO\_HIGH$ .

signal = ND\_IN\_SCAN\_CLOCK\_TIMEBASE

| source                      | sourceSpec                        |
|-----------------------------|-----------------------------------|
| ND_PFI_0 through ND_PFI_9   | ND_LOW_TO_HIGH and ND_HIGH_TO_LOW |
| ND_RTSI_0 through ND_RTSI_6 | ND_LOW_TO_HIGH and ND_HIGH_TO_LOW |
| ND_INTERNAL_20_MHZ          | ND_LOW_TO_HIGH                    |
| ND_INTERNAL_100_KHZ         | ND_LOW_TO_HIGH                    |

Use ND\_IN\_SCAN\_CLOCK\_TIMEBASE as an input into the DAQ-STC scan timer. The scan timer generates timing by counting the signal at its input, and producing an IN\_START\_SCAN signal after the specified number of occurrences of the ND\_IN\_SCAN\_CLOCK\_TIMEBASE signal transitions.

If you do not call this function with **signal** = ND\_IN\_SCAN\_CLOCK\_TIMEBASE, NI-DAQ uses the default values, **source** = ND\_INTERNAL\_20\_MHZ and **sourceSpec** = ND\_LOW\_TO\_HIGH.

signal = ND\_IN\_CHANNEL\_CLOCK\_TIMEBASE

| source                      | sourceSpec                        |
|-----------------------------|-----------------------------------|
| ND_PFI_0 through ND_PFI_9   | ND_LOW_TO_HIGH and ND_HIGH_TO_LOW |
| ND_RTSI_0 through ND_RTSI_6 | ND_LOW_TO_HIGH and ND_HIGH_TO_LOW |
| ND_INTERNAL_20_MHZ          | ND_LOW_TO_HIGH                    |
| ND_INTERNAL_100_KHZ         | ND_LOW_TO_HIGH                    |

Use ND\_IN\_CHANNEL\_CLOCK\_TIMEBASE as an input into the DAQ-STC sample (channel interval) timer. The sample timer generates timing by counting the signal at its input, and producing an ND\_IN\_CONVERT signal after the specified number of occurrences of the ND\_IN\_CHANNEL\_CLOCK\_TIMEBASE signal transitions.

If you do not call this function with  $signal = ND_IN_SCAN_CLOCK_TIMEBASE$ , NI-DAQ uses the default values,  $source = ND_INTERNAL_20_MHZ$  and  $sourceSpec = ND_LOW_TO_HIGH$ .

signal = ND\_OUT\_START\_TRIGGER

| source                      | sourceSpec                        |
|-----------------------------|-----------------------------------|
| ND_PFI_0 through ND_PFI_9   | ND_LOW_TO_HIGH and ND_HIGH_TO_LOW |
| ND_RTSI_0 through ND_RTSI_6 | ND_LOW_TO_HIGH and ND_HIGH_TO_LOW |

| source              | sourceSpec     |
|---------------------|----------------|
| ND_IN_START_TRIGGER | ND_LOW_TO_HIGH |
| ND_AUTOMATIC        | ND_LOW_TO_HIGH |
| ND_IO_CONNECTOR     | ND_LOW_TO_HIGH |

Use ND\_OUT\_START\_TRIGGER to initiate a waveform generation sequence. You can use an external signal or the signal used as the ND\_IN\_START\_TRIGGER, or NI-DAQ can generate it. Setting source to ND\_IN\_START\_TRIGGER is useful for synchronizing waveform generation with data acquisition.

If you do not call this function with signal = ND\_OUT\_START\_TRIGGER, NI-DAQ uses the default values, source = ND\_AUTOMATIC and sourceSpec = ND\_LOW\_TO\_HIGH.

signal = ND\_OUT\_UPDATE

| source                      | sourceSpec                        |
|-----------------------------|-----------------------------------|
| ND_PFI_0 through ND_PFI_9   | ND_LOW_TO_HIGH and ND_HIGH_TO_LOW |
| ND_RTSI_0 through ND_RTSI_6 | ND_LOW_TO_HIGH and ND_HIGH_TO_LOW |
| ND_GPCTR1_OUTPUT            | ND_LOW_TO_HIGH and ND_HIGH_TO_LOW |
| ND_INTERNAL_TIMER           | ND_LOW_TO_HIGH                    |

Use this signal for update timing. You can use a DAQ-STC timer for timing the updates, or you can use an external signal. You also can use output of the general-purpose counter 1 for update timing.

If you do not call this function with signal = ND\_OUT\_UPDATE, NI-DAQ uses the default values, **source** = ND\_INTERNAL\_TIMER and **sourceSpec** = ND\_LOW\_TO\_HIGH.

signal = ND\_OUT\_EXTERNAL\_GATE

| source                      | sourceSpec                           |
|-----------------------------|--------------------------------------|
| ND_PFI_0 through ND_PFI_9   | ND_PAUSE_ON_HIGH and ND_PAUSE_ON_LOW |
| ND_RTSI_0 through ND_RTSI_6 | ND_PAUSE_ON_HIGH and ND_PAUSE_ON_LOW |
| ND_NONE                     | ND_DONT_CARE                         |

Use this signal for gating the waveform generation. For example, if you call this function with **signal** = ND\_OUT\_EXTERNAL\_GATE, **source** = ND\_PFI\_9, and sourceSpec = ND\_PAUSE\_ON\_HIGH, the waveform generation will be paused whenever the PFI 9 is at the high level.

If you do not call this function with **signal** = ND\_OUT\_EXTERNAL\_GATE, NI-DAQ uses the default values, **source** = ND\_NONE and **sourceSpec** = ND\_DONT\_CARE; therefore, by default, the waveform generation is not gated.

signal = ND\_OUT\_UPDATE\_CLOCK\_TIMEBASE

| source                      | sourceSpec                        |
|-----------------------------|-----------------------------------|
| ND_PFI_0 through ND_PFI_9   | ND_LOW_TO_HIGH and ND_HIGH_TO_LOW |
| ND_RTSI_0 through ND_RTSI_6 | ND_LOW_TO_HIGH and ND_HIGH_TO_LOW |
| ND_INTERNAL_20_MHZ          | ND_LOW_TO_HIGH                    |
| ND_INTERNAL_100_KHZ         | ND_LOW_TO_HIGH                    |

Use this signal as an input into the DAQ-STC update timer. The update timer generates timing by counting the signal at its input and producing an ND\_OUT\_UPDATE signal after the specified number of occurrences of the ND\_OUT\_UPDATE\_CLOCK\_TIMEBASE signal transitions.

If you do not call this function with  $signal = ND\_OUT\_UPDATE\_CLOCK\_TIMEBASE$ , NI-DAQ uses the default values,  $source = ND\_INTERNAL\_20\_MHZ$  and  $sourceSpec = ND\_LOW\_TO\_HIGH$ .

### signal = ND\_PFI\_0 through ND\_PFI\_9

The following table summarizes all the signals and source for the I/O connector pins PFI0 through PFI9.

| signal                    | source                                                                                                   | sourceSpec     |
|---------------------------|----------------------------------------------------------------------------------------------------------|----------------|
| ND_PFI_0 through ND_PFI_9 | ND_NONE                                                                                                  | ND_DONT_CARE   |
| ND_PFI_0                  | ND_IN_START_TRIGGER                                                                                      | ND_LOW_TO_HIGH |
| ND_PFI_1                  | ND_IN_STOP_TRIGGER                                                                                       | ND_LOW_TO_HIGH |
| ND_PFI_2                  | ND_IN_CONVERT Refer to the Special Considerations when source = ND_CONVERT section for more information. | ND_HIGH_TO_LOW |
| ND_PFI_3                  | ND_GPCTR1_SOURCE                                                                                         | ND_LOW_TO_HIGH |
| ND_PFI_4                  | ND_GPCTR1_GATE                                                                                           | ND_POSITIVE    |
| ND_PFI_5                  | ND_OUT_UPDATE                                                                                            | ND_HIGH_TO_LOW |
| ND_PFI_6                  | ND_OUT_START_TRIGGER                                                                                     | ND_LOW_TO_HIGH |
| ND_PFI_7                  | ND_IN_SCAN_START                                                                                         | ND_LOW_TO_HIGH |

Use ND\_NONE to disable output on the pin.

signal = ND\_GPCTR0\_OUTPUT

| source                      | sourceSpec     |
|-----------------------------|----------------|
| ND_NONE                     | ND_DONT_CARE   |
| ND_GPCTR0_OUTPUT            | ND_LOW_TO_HIGH |
| ND_RTSI_0 through ND_RTSI_6 | ND_LOW_TO_HIGH |

Use ND\_NONE to disable output on the pin. When you disable output on this pin, you can use the pin as an input pin, and you can attach an external signal to it. This is useful because it enables you to communicate a signal from the I/O connector to the RTSI bus.

When you enable this pin for output, you can program it to output the signal present at any one of the RTSI bus trigger lines or the general-purpose counter 0 output. The RTSI selections are useful because they enable you to communicate a signal from the RTSI bus to the I/O connector.

signal = ND\_GPCTR1\_OUTPUT

| source           | sourceSpec     |
|------------------|----------------|
| ND_NONE          | ND_DONT_CARE   |
| ND_GPCTR1_OUTPUT | ND_LOW_TO_HIGH |
| ND_RESERVED      | ND_DONT_CARE   |

Use ND\_NONE to disable the output on the pin; in other words, do place the pin in high impedance state.

NI-DAQ can use ND\_RESERVED when you use this device with some of the SCXI modules. In this case, you can use general-purpose counter 1, but the output will not be available on the I/O connector because the pin is used for device-to-SCXI communication. Currently, there are no SCXI modules that require this.

signal = ND\_FREQ\_OUT

| source              | sourceSpec   |
|---------------------|--------------|
| ND_NONE             | ND_DONT_CARE |
| ND_INTERNAL_10_MHZ  | 1 through 16 |
| ND_INTERNAL_100_KHZ | 1 through 16 |

Use ND\_NONE to disable the output on the pin; in other words, to place the pin in high impedance state.

The signal present on the FREQ\_OUT pin of the I/O connector is the divided-down version of one of the two internal timebases. Use **sourceSpec** to specify the divide-down factor.

signal = ND\_SCANCLK\_LINE

| source     | sourceSpec     |
|------------|----------------|
| ND_SCANCLK | ND_LOW_TO_HIGH |
| ND_NONE    | ND_DONT_CARE   |



**Note** This information applies to E Series boards only.

When **source** = ND\_SCANCLK, the signal provided by the E Series board to time operation of certain classes of external accessories, such as external multiplexers or signal conditioning circuits, appears at the SCANCLK pin on the IO connector. This signal pulses once each time and A/D conversion is performed. When **source** = ND\_NONE, the signal is disabled. If you have and NI accessory that requires this signal, NI-DAQ will automatically enable it as needed. Refer to your E Series User Manual for further details about this signal.

signal = ND\_RTSI\_0 through ND\_RTSI\_6

| source               | sourceSpec     |
|----------------------|----------------|
| ND_NONE              | ND_DONT_CARE   |
| ND_IN_START_TRIGGER  | ND_LOW_TO_HIGH |
| ND_IN_STOP_TRIGGER   | ND_LOW_TO_HIGH |
| ND_IN_CONVERT        | ND_HIGH_TO_LOW |
| ND_OUT_UPDATE        | ND_HIGH_TO_LOW |
| ND_OUT_START_TRIGGER | ND_LOW_TO_HIGH |
| ND_GPCTR0_SOURCE     | ND_LOW_TO_HIGH |

| • |  |
|---|--|
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |

| source           | sourceSpec     |
|------------------|----------------|
| ND_GPCTR0_GATE   | ND_POSITIVE    |
| ND_GPCTR0_OUTPUT | ND_DONT_CARE   |
| ND_IN_SCAN_START | ND_LOW_TO_HIGH |



**Note** This information applies to E Series devices only.

When **source** = ND\_IN\_SCAN\_START, the actual signal source on the specified RTSI line is ND\_IN\_SCAN\_START or ND\_IN\_SCAN\_IN\_PROG. The default signal source is ND\_IN\_SCAN\_START, with **source** = ND\_IN\_SCAN\_START. The following actions will change the signal source:

• Call the select\_signal function with **signal** = ND\_PFI\_7 and **source** = ND\_IN\_SCAN\_START or ND\_SCAN\_IN\_PROG.



Note Disabling the output on the PFI7 line (by calling Select\_Signal with signal = ND\_PFI\_7 and source = ND\_NONE) and then calling Select\_Signal with signal = ND\_RTSI\_i (where i= 0-6) and source = ND\_IN\_SCAN\_START will result in ND\_IN\_SCAN\_START being driven on the specified RTSI line regardless of what source was used to drive the PFI7 line in any previous Select\_Signal call.

Configuring some external devices, such as the SC-2040, causes the
 ND\_IN\_SCAN\_IN\_PROG signal to be output on the PFI7 line. This causes an ensuing call
 to Select\_Signal with signal = ND\_RTSI\_i and source = ND\_IN\_SCAN\_START to
 drive ND\_IN\_SCAN\_IN\_PROG onto the specified RTSI line.

You can use the GPCTRO\_OUTPUT pin on the I/O connector in two ways—as an output pin or an input pin. When you configure the pin as an output pin, you can program the pin to output a signal from a RTSI line or the general-purpose counter 0 output (see **signal** = ND\_GPCTRO\_OUTPUT in this function for details). When you configure the pin as an input pin, you can attach an external signal to the pin. When **signal** is one of the RTSI lines, and **source** = ND\_GPCTRO\_OUTPUT, the signal on the RTSI line will be the signal present at the GPCTRO\_OUTPUT pin on the I/O connector, which is not always the output of the general-purpose counter 0.

signal = ND\_RTSI\_CLOCK

| source         | sourceSpec   |
|----------------|--------------|
| ND_NONE        | ND_DONT_CARE |
| ND_BOARD_CLOCK | ND_DONT_CARE |

Use **source** = ND\_NONE to stop the device from driving the RTSI clock line.

When **source** = ND\_BOARD\_CLOCK, this device drives the signal on the RTSI clock line.

signal = ND\_BOARD\_CLOCK

| source         | sourceSpec   |
|----------------|--------------|
| ND_BOARD_CLOCK | ND_DONT_CARE |
| ND_RTSI_CLOCK  | ND_DONT_CARE |

Use **source** = ND\_BOARD\_CLOCK to stop the device from receiving the clock signal from the RTSI clock line.

Use **source** = ND\_RTSI\_CLOCK to program the device to receive the clock signal from the RTSI clock line.

signal = ND\_PLL\_REF\_SOURCE

| source            | sourceSpec   |
|-------------------|--------------|
| ND_RTSI_CLOCK     | ND_DONT_CARE |
| ND_IO_CONNECTOR   | ND_DONT_CARE |
| ND_NONE (default) | ND_DONT_CARE |

Use ND NONE for internal calibrated reference.

By using ND\_IO\_CONNECTOR, you can select an external reference clock to be the source for the phase-locked loop (PLL), or you can use ND\_RTSI\_CLOCK when running at 20 MHz to be the reference clock source for the PLL. By default, NI-DAQ selects the internal reference.

### Special Considerations when source = ND\_CONVERT

When you enable the convert signal to go out on PFI\_2 or any of the RTSI lines, there is a pulse prior to the start of data acquisition. This is the side effect of programming the device for data acquisition, and the receiver of the signal should keep this in mind. For example, to synchronize two devices using the convert signal, you should also make them share the start trigger signal so that the spurious convert pulse generated by the controlling device is ignored by the controlling device.

#### Parameter Discussion for the 660X Devices

Legal ranges for the **signal**, **source**, and **sourceSpec** parameters are given in terms of constants that are defined in a header file.

- BASIC programmers—NIDAQCNS.INC (Visual Basic for Windows programmers should refer to the *Programming Language Considerations* section in Chapter 1, *Using the NI-DAQ Functions*, for more information.)
- Pascal programmers—NIDAQCNS.PAS



**Note** Use the signal parameter to specify the signal whose source you want to select. The following table shows the possible values for signal.

**Table 2-31.** Legal Parameters for the 660*X* Devices

| Group                                          | Signal                                        | Description                                                                  |
|------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|
| All of the RTSI lines                          | ND_RTSI_0 through ND_RTSI_6 and ND_RTSI_CLOCK | Selects a counter for output on a RTSI line                                  |
| The triggering input for the counter           | ND_START_TRIGGER                              | Selects a source for the hardware arming or triggering source of the counter |
| PFI lines                                      | ND_PFI_LINE_0 through ND_PFI_LINE_39          | Sets PFI line to an input or output state                                    |
| Configurable digital filter                    | ND_CONFIGURABLE_FILTER                        | Selects the signal to be used as a digital filter for PFI lines.             |
| Board timing                                   | ND_BOARD_CLOCK                                | Allows two boards to use the same clock                                      |
| (PXI-6608 only) PXI chassis<br>backplane lines | ND_PXI_BACKPLANE_CLOCK                        | Allows the board to drive the PXI backplane clock.                           |

Legal values for source and sourceSpec depend on the signal and are shown in the following tables:

signal = ND\_RTSI\_0 through ND\_RTSI\_6 and ND\_RTSI\_CLOCK

| source            | sourceSpec   |
|-------------------|--------------|
| ND_NONE (default) | ND_DONT_CARE |
| ND_LOW            | ND_DONT_CARE |
| ND_HIGH           | ND_DONT_CARE |

| source                                                   | sourceSpec   |
|----------------------------------------------------------|--------------|
| ND_GPCTR0_OUTPUT through ND_GPCTR7_OUTPUT                | ND_DONT_CARE |
| ND_BOARD_CLOCK (only when <b>signal</b> = ND_RTSI_CLOCK) | ND_DONT_CARE |
| ND_STABLE_10_MHZ (only for 6608 devices)                 | ND_DONT_CARE |

You can use the internal, highly stable 10 MHz oscillator (only on 6608 devices) as the source (or gate) of any counter by routing the clock to any of the RTSI lines and then using that RTSI line as the source (or gate) for that counter.

#### **Example**

```
/* first route the 10 MHz clock to RTSI line 0 */
status = Select_Signal (1, ND_RTSI_0, ND_STABLE_10_MHZ,
ND_DONT_CARE);
/* next route the RTSI line 0 to the source of counter 1 */
status = GPCTR_Change_Parameter (1, 1, ND_SOURCE, ND_RTSI_0);
```

This example shows how to use stable 10 MHz clock as the source of counter 1.

(PXI-6608 devices only)—The PXI-6608 device, when plugged into the star-controller slot (slot 2), automatically drives the RTSI\_6 line with its internal, stable 10 MHz oscillator (ND\_STABLE\_10\_MHZ) during initialization. This in turn drives the PXI backplane clock (PXI\_CLK10). In this case, you can directly use the RTSI\_6 line as the source or gate of any counter. You can also use any of the other RTSI lines to route the stable 10 MHz clock as shown in the previous example. When plugged into a non-star controller slot (slots 3 and higher), the PXI-6608 does not drive the PXI backplane clock. Instead, you can use the RTSI\_6 line to drive the PXI\_STAR line in the PXI backplane for advanced timing and triggering applications. Refer to Table 2-32, Descriptions for application and your hardware user manual for details.

signal = ND\_START\_TRIGGER

| source                                        | sourceSpec                          |
|-----------------------------------------------|-------------------------------------|
| ND_LOW                                        | ND_DONT_CARE                        |
| ND_HIGH                                       | ND_DONT_CARE                        |
| ND_PFI_0 through ND_PFI_39                    | ND_LOW_TO_HIGH or<br>ND_HIGH_TO_LOW |
| ND_RTSI_0 through ND_RTSI_6 and ND_RTSI_CLOCK | ND_LOW_TO_HIGH or<br>ND_HIGH_TO_LOW |

### **Example**

```
status = Select_Signal (1, ND_START_TRIGGER, ND_RTSI_5,
ND_LOW_TO_HIGH);
```

This example would route RTSI\_5 to be the start trigger for the counters on a 6602 device. An active edge on RTSI\_5 starts all counters that await a START\_TRIGGER. The software start must be issued to the counter before the start trigger will work. A counter is configured to start upon receiving a start trigger through a GPCTR\_Change parameter call with **paramID** = ND\_START\_TRIGGER and **paramValue** = ND\_ENABLED.

signal = ND\_BOARD\_CLOCK

| source         | sourceSpec   |
|----------------|--------------|
| ND_BOARD_CLOCK | ND_DONT_CARE |
| ND_RTSI_CLOCK  | ND_DONT_CARE |

Use **source** = ND\_BOARD\_CLOCK to stop the device from receiving the clock signal from the RTSI clock line.

Use **source** = ND\_RTSI\_CLOCK to program the device to receive the clock signal from the RTSI clock line. This parameter makes the signal on the RTSI clock line replace the internal 20 MHz timebase signal on the board. As a result, the RTSI clock signal is routed to wherever the internal 20 MHz timebase was previously routed. In addition, the frequency of the 100 KHz internal timebase equals the RSTI\_CLOCK frequency divided by 200. These changes to the internal 20 MHz and 100 KHz timebases may affect some of your calculations based on counter values.

signal = ND\_CONFIGUREABLE\_FILTER

| source                                        | sourceSpec   |
|-----------------------------------------------|--------------|
| ND_RTSI_0 through ND_RTSI_6 and ND_RTSI_CLOCK | ND_DONT_CARE |

The configurable filter gives PFI lines a more flexible way of selecting their digital filter.

## **Example**

```
status = Select_Signal (1, ND_CONFIGURABLE_FILTER, ND_RTSI_0,
ND_DONT_CARE);
status = Line_Change_Attribute (1, ND_PFI_0, ND_LINE_FILTER,
ND_CONFIGURABLE_FILTER);
```

This example shows how to set up the configurable filter. Signals coming in on PFI line 0 will be filtered based upon the frequency of the signal on RTSI line 0.

signal = ND\_PFI\_0 through ND\_PFI\_39

| signal                    | source                              | sourceSpec   |
|---------------------------|-------------------------------------|--------------|
| ND_PFI_0 through ND_PFI_7 | ND_NONE (default)                   | ND_DONT_CARE |
| ND_PFI_8                  | ND_GPCTR7_OUTPUT (default), ND_NONE | ND_DONT_CARE |
| ND_PFI_9                  | ND_NONE (default)                   |              |
| ND_PFI_10                 | ND_NONE (default), ND_GPCTR7_GATE   |              |
| ND_PFI_11                 | ND_NONE (default), ND_GPCTR7_SOURCE | ND_DONT_CARE |
| ND_PFI_12                 | ND_GPCTR6_OUTPUT (default), ND_NONE | ND_DONT_CARE |
| ND_PFI_13                 | ND_NONE (default)                   |              |
| ND_PFI_14                 | ND_NONE (default), ND_GPCTR6_GATE   |              |
| ND_PFI_15                 | ND_NONE (default), ND_GPCTR6_SOURCE | ND_DONT_CARE |
| ND_PFI_16                 | ND_GPCTR5_OUTPUT (default), ND_NONE | ND_DONT_CARE |
| ND_PFI_17                 | ND_NONE (default)                   |              |
| ND_PFI_18                 | ND_NONE (default), ND_GPCTR5_GATE   |              |
| ND_PFI_19                 | ND_NONE (default), ND_GPCTR5_SOURCE | ND_DONT_CARE |
| ND_PFI_20                 | ND_GPCTR4_OUTPUT (default), ND_NONE | ND_DONT_CARE |
| ND_PFI_21                 | ND_NONE (default)                   |              |
| ND_PFI_22                 | ND_NONE (default), ND_GPCTR4_GATE   |              |
| ND_PFI_23                 | ND_NONE (default), ND_GPCTR4_SOURCE | ND_DONT_CARE |

| signal    | source                                                                      | sourceSpec   |
|-----------|-----------------------------------------------------------------------------|--------------|
| ND_PFI_24 | ND_GPCTR3_OUTPUT (default), ND_NONE                                         | ND_DONT_CARE |
| ND_PFI_25 | ND_NONE (default)                                                           |              |
| ND_PFI_26 | ND_NONE (default), ND_GPCTR3_GATE                                           |              |
| ND_PFI_27 | ND_NONE (default), ND_GPCTR3_SOURCE                                         | ND_DONT_CARE |
| ND_PFI_28 | ND_GPCTR2_OUTPUT (default), ND_NONE                                         | ND_DONT_CARE |
| ND_PFI_29 | ND_NONE (default)                                                           |              |
| ND_PFI_30 | ND_NONE (default), ND_GPCTR2_GATE                                           |              |
| ND_PFI_31 | ND_NONE (default), ND_GPCTR2_SOURCE                                         | ND_DONT_CARE |
| ND_PFI_32 | ND_GPCTR1_OUTPUT (default), ND_NONE                                         | ND_DONT_CARE |
| ND_PFI_33 | ND_NONE (default)                                                           | ND_DONT_CARE |
| ND_PFI_34 | ND_NONE (default), ND_GPCTRI_GATE                                           | ND_DONT_CARE |
| ND_PFI_35 | ND_NONE (default), ND_GPCTR1_SOURCE                                         | ND_DONT_CARE |
| ND_PFI_36 | ND_INTERNAL_LINE_0, ND_INTERNAL_LINE_8, ND_GPCTR0_OUTPUT (default), ND_NONE | ND_DONT_CARE |
| ND_PFI_37 | ND_NONE (default)                                                           | ND_DONT_CARE |
| ND_PFI_38 | ND_NONE (default), ND_DONT_CARE ND_GPCTR0_GATE                              |              |
| ND_PFI_39 | ND_NONE (default), ND_DONT_CAR. ND_GPCTR0_SOURCE                            |              |

Most IO pins on the 6602 boards are capable of doing input and output.

## **Example**

```
status = Select_Signal (1, ND_PFI_24, ND_GPCTR3_OUTPUT,
ND_DONT_CARE);
```

## For PXI-6608 device only

signal = ND\_PXI\_BACKPLANE\_CLOCK

| source           | sourceSpec   |
|------------------|--------------|
| ND_STABLE_10_MHZ | ND_DONT_CARE |
| ND_NONE          | ND_DONT_CARE |

The PXI chassis has a 10 MHz clock line (PXI\_CLK10) in its backplane which allows boards plugged in the non-star controller slots (slots 3 and higher) to phase-lock their oscillators to the backplane clock. This way the drift in the oscillators on all the boards in the non-star controller slots can be controlled by a single backplane clock. The PXI-6608 device when plugged in the star-controller slot (slot 2) automatically drives the PXI backplane clock with its much more stable oscillator. Alternatively, when plugged in one of the non-star controller slots (slots 3 and higher) the PXI-6608 automatically phase-locks its oscillator to the backplane clock. You can use the above call with **source** = ND\_NONE to disable or **source** = ND\_STABLE\_10\_MHZ to enable the 6608 from driving the backplane clock. This call is valid only if the PXI-6608 is plugged in the star-controller slot (slot 2) of the PXI chassis.

## **Using This Function**

If you have selected a signal that is not an I/O connector pin, pin or a RTSI bus line, Select\_Signal saves the parameters in the configuration tables for future operations. Functions that initiate data acquisition (DAQ\_Start, SCAN\_Start, DAQ\_Op, and SCAN\_Op) and waveform generation operations (WFM\_Group\_Control and WFM\_Op) use the configuration tables to set the device circuitry to the correct timing modes.

You do not need to call this function if you are satisfied with the default settings for the signals.

If you have selected a signal that is an I/O connector signal or a RTSI bus signal, Select\_Signal performs signal routing and enables or disables output on a pin or a RTSI line.

### **Example**

To send a signal from your E Series device to the RTSI bus, set **signal** to the appropriate RTSI bus line and **source** to indicate the signal from your device. If you want to send the analog input start trigger on to RTSI line 3, use the following call:

```
Select_Signal(deviceNum, ND_RTSI_3, ND_IN_START_TRIGGER,
ND_LOW_TO_HIGH)
```

### **Example**

To receive a signal from the RTSI bus and use it as a signal on your E Series device, set **signal** to indicate the appropriate E Series device signal and **source** to the appropriate RTSI line. If you want to use low-to-high transitions of the signal present on the RTSI line 4 as your scan clock, use the following call:

Select\_Signal(deviceNum, ND\_IN\_SCAN\_START, ND\_RTSI\_4, ND\_LOW\_TO\_HIGH)

## **Signal Name Equivalencies**

For a variety of reasons, some timing signals are given different names in the hardware documentation and the software and its documentation. The following table lists the equivalencies between the two sets of signal names.

| Signals    | Hardware Name | Software Name                |
|------------|---------------|------------------------------|
| AI-Related | TRIG1         | ND_IN_START_TRIGGER          |
|            | TRIG2         | ND_IN_STOP_TRIGGER           |
|            | STARTSCAN     | ND_IN_SCAN_START             |
|            | SISOURCE      | ND_IN_SCAN_CLOCK_TIMEBASE    |
|            | CONVERT*      | ND_IN_CONVERT                |
|            | AIGATE        | ND_IN_EXTERNAL_GATE          |
|            | SI2SOURCE     | ND_IN_CHANNEL_CLOCK_TIMEBASE |
| AO-Related | WFTRIG        | ND_OUT_START_TRIGGER         |
|            | UPDATE*       | ND_OUT_UPDATE                |
|            | AOGATE        | ND_OUT_EXTERNAL_GATE         |
|            | UISOURCE      | ND_OUT_UPDATE_CLOCK_TIMEBASE |
|            | AO2GATE       | N/A                          |
|            | UI2SOURCE     | N/A                          |

**Table 2-32.** E Series and 671*X* Signal Name Equivalencies

The VXI-MIO-64E-1 and VXI-MIO-64XE-10 devices use the VXIbus trigger lines to implement the RTSI bus synchronization between two or more such devices. The following table shows the mapping between the RTSI bus line (identifier) and the corresponding VXIbus trigger line.

Table 2-33. RTSI Bus Line and VXIbus Trigger Mapping

| RTSI bus line identifier | VXIbus trigger line            |
|--------------------------|--------------------------------|
| ND_RTSI_0                | VXIbus TTL Trigger 0 (TTLTRG0) |
| ND_RTSI_1                | VXIbus TTL Trigger 1 (TTLTRG1) |
| ND_RTSI_2                | VXIbus TTL Trigger 2 (TTLTRG2) |
| ND_RTSI_3                | VXIbus TTL Trigger 3 (TTLTRG3) |
| ND_RTSI_4                | VXIbus TTL Trigger 4 (TTLTRG4) |
| ND_RTSI_5                | VXIbus ECL Trigger 0 (ECLTRG0) |
| ND_RTSI_6                | VXIbus ECL Trigger 1 (ECLTRG1) |
| ND_RTSI_CLOCK            | VXIbus ECL Trigger 0 (ECLTRG0) |



**Note** Unpredictable behavior might result if other VXIbus devices simultaneously use the same VXIbus trigger line that the VXI-MIO devices are using to synchronize their operations.

Table 2-34. RTSI Bus Line and PXI Bus Trigger Mapping

| RTSI bus line identifier | PXI bus trigger line |
|--------------------------|----------------------|
| ND_RTSI_0                | PXI Trigger 0        |
| ND_RTSI_1                | PXI Trigger 1        |
| ND_RTSI_2                | PXI Trigger 2        |
| ND_RTSI_3                | PXI Trigger 3        |
| ND_RTSI_4                | PXI Trigger 4        |
| ND_RTSI_5                | PXI Trigger 5        |
| ND_RTSI_6                | PXI Star             |
| ND_RTSI_CLOCK            | PXI Trigger 7        |



**Note** Unpredictable behavior might result if other PXI devices simultaneously use the same PXI trigger line that the PXI DAQ devices are using to synchronize their operations.



Note PXI trigger 6 line is not connected to any of the RTSI lines on all PXI boards.

# Set DAQ Device Info

#### **Format**

status = Set\_DAQ\_Device\_Info (deviceNumber, infoType, infoValue)

### **Purpose**

Changes the data transfer mode (interrupts and DMA) for certain classes of data acquisition operations, some settings for an SC-2040 track-and-hold accessory and an SC-2043-SG strain-gauge accessory, as well as the source for the CLK1 signal on the DAQCard-700.

Chapter 2

#### **Parameters**

### Input

| Name         | Туре | Description                                                                |
|--------------|------|----------------------------------------------------------------------------|
| deviceNumber | i16  | assigned by configuration utility                                          |
| infoType     | u32  | parameter you want to modify                                               |
| infoValue    | u32  | new value you want to assign to the parameter specified by <b>infoType</b> |

#### Parameter Discussion

Legal ranges for the **infoType** and **infoValue** are given in terms of constants that are defined in a header file. The header file you should use depends on which of the following languages you are using:

- C programmers—NIDAQCNS.H (DATAACQ.H for LabWindows/CVI)
- BASIC programmers—NIDAQCNS.INC (Visual Basic for Windows programmers should refer to the *Programming Language Considerations* section in Chapter 1, *Using the NI-DAQ Functions*, for more information.)
- Pascal programmers—NIDAQCNS.PAS

**infoType** indicates which parameter you want to change. Use **infoValue** to specify the corresponding new value.

Values that **infoType** accepts depend on the device you are using. The legal range for **infoValue** depends on the device you are using and **infoType**.

## **infoType** can be one of the following:

| infoType                                               | Description                                                                                                       |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| ND_ACK_REQ_EXCHANGE_GR1<br>ND_ACK_REQ_EXCHANGE_GR2     | Used to exchange the ACK and REQ pins on the DIO 6533 (DIO-32HS) connector                                        |
| ND_AI_FIFO_INTERRUPTS                                  | Used to select method of AI interrupt generation                                                                  |
| ND_CALIBRATION_ENABLE                                  | Used to enable or disable writes to the calibration channels                                                      |
| ND_CLOCK_REVERSE_MODE_GR1<br>ND_CLOCK_REVERSE_MODE_GR2 | Used to reverse the PCLK clock direction on the DIO 6533 (DIO-32HS) in burst handshaking mode                     |
| ND_COUNTER_1_SOURCE                                    | Used to select a source for counter 1 on the DAQCard-700                                                          |
| ND_DATA_XFER_MODE_AI                                   | Method NI-DAQ uses for data transfers when performing the DAQ, MDAQ, and SCAN operations                          |
| ND_DATA_XFER_MODE_AO_GR1 ND_DATA_XFER_MODE_AO_GR2      | Method NI-DAQ uses for data transfers when performing the WFM operations which require buffers from the PC memory |
| ND_DATA_XFER_MODE_GPCTR0                               | Method NI-DAQ uses for data transfers when buffered GPCTR operations are used with the general-purpose counter 0  |
| ND_DATA_XFER_MODE_GPCTR1                               | Method NI-DAQ uses for data transfers when buffered GPCTR operations are used with the general-purpose counter 1  |
| ND_DATA_XFER_MODE_GPCTR2                               | Method NI-DAQ uses for data transfers when buffered GPCTR operations are used with the general-purpose counter    |
| ND_DATA_XFER_MODE_GPCTR3                               | Method NI-DAQ uses for data transfers when buffered GPCTR operations are used with the general-purpose counter 3  |
| ND_DATA_XFER_MODE_GPCTR4                               | Method NI-DAQ uses for data transfers when buffered GPCTR operations are used with the general-purpose counter 4  |
| ND_DATA_XFER_MODE_GPCTR5                               | Method NI-DAQ uses for data transfers when buffered GPCTR operations are used with the general-purpose counter 5  |

| infoType                                                                                                                                                                                                        | Description                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| ND_DATA_XFER_MODE_GPCTR6                                                                                                                                                                                        | Method NI-DAQ uses for data transfers when buffered GPCTR operations are used with the general-purpose counter 6 |
| ND_DATA_XFER_MODE_GPCTR7                                                                                                                                                                                        | Method NI-DAQ uses for data transfers when buffered GPCTR operations are used with the general-purpose counter 7 |
| ND_DATA_XFER_MODE_DIO_GR1 ND_DATA_XFER_MODE_DIO_GR2 ND_DATA_XFER_MODE_DIO_GR3 ND_DATA_XFER_MODE_DIO_GR4 ND_DATA_XFER_MODE_DIO_GR5 ND_DATA_XFER_MODE_DIO_GR6 ND_DATA_XFER_MODE_DIO_GR7 ND_DATA_XFER_MODE_DIO_GR8 | Method NI-DAQ uses for data transfers for the digital input and output operations with group <i>N</i> (1 to 8)   |
| ND_SC_2040_MODE                                                                                                                                                                                                 | Used to enable or disable the track-and-hold circuitry on the SC-2040                                            |
| ND_SC_2043_MODE                                                                                                                                                                                                 | Used to enable or disable the SC-2043-SG accessory                                                               |
| ND_SET_POWERUP_STATE                                                                                                                                                                                            | Used to save the current channel values as the powerup values                                                    |
| ND_SUSPEND_POWER_STATE                                                                                                                                                                                          | State of USB device power when your operating system enters power-saving/suspend mode                            |

### infoValue can be one of the following:

| infoValue         | Description                                                                                      |
|-------------------|--------------------------------------------------------------------------------------------------|
| ND_ACTIVE         | Suspends the supply of power to USB devices if the USB Port is also in powersave mode            |
| ND_AUTOMATIC      | Lets NI-DAQ decide the type of FIFO interrupt based on the acquisition rate. This is the default |
| ND_INACTIVE       | Maintains the supply of power to USB devices even if the USB port is in powersave mode           |
| ND_INTERRUPTS     | NI-DAQ uses interrupts for data transfer                                                         |
| ND_INTERNAL_TIMER | Counter 1 uses the internal timer as the source for its CLK1 source                              |

| infoValue                 | Description                                                                                                                                                                                         |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND_INTERRUPT_EVERY_SAMPLE | Generates interrupts on every sample regardless of the acquisition rate                                                                                                                             |
| ND_INTERRUPT_HALF_FIFO    | Generates interrupts only when the FIFO is half full, regardless of the acquisition rate                                                                                                            |
| ND_IO_CONNECTOR           | Counter 1 uses the CLK1 signal from the I/O connector as the source for its CLK1 signal                                                                                                             |
| ND_NONE                   | Cancels the effects of having accidentally called the SC_2040_Config function                                                                                                                       |
| ND_NO_STRAIN_GAUGE        | Disables the SC-2043-SG accessory                                                                                                                                                                   |
| ND_NO_TRACK_AND_HOLD      | Disables use of the track-and-hold circuitry on the SC-2040 <sup>1</sup>                                                                                                                            |
| ND_OFF                    | Disables the ACK and REQ exchange or the reversal of the clock direction of the DIO 6533 (DIO-32HS)                                                                                                 |
| ND_ON                     | Exchanges the ACK and REQ pins or reverses the clock direction on the DIO 6533 (DIO-32HS)                                                                                                           |
| ND_STRAIN_GAUGE           | Enables the SC-2043-SG accessory for strain-gauge measurements (no excitation on channel 0)                                                                                                         |
| ND_STRAIN_GAUGE_EX0       | Enables the SC-2043-SG accessory with excitation on channel 0                                                                                                                                       |
| ND_TRACK_AND_HOLD         | Re-enables the track-and-hold circuitry on an SC-2040 if you have previously disabled it <sup>2</sup>                                                                                               |
| ND_UP_TO_1_DMA_CHANNEL    | NI-DAQ must use <i>only</i> one DMA channel; if the DMA channel is not available, NI-DAQ reports an error and it will not perform the operation                                                     |
| ND_UP_TO_2_DMA_CHANNELS   | NI-DAQ uses two DMA channels, if possible; otherwise, it uses one DMA channel, if one is available; if no DMA channels are available, NI-DAQ reports an error and it will not perform the operation |

| infoValue                                                                                        | Description                                    |
|--------------------------------------------------------------------------------------------------|------------------------------------------------|
| ND_FOREGROUND                                                                                    | NI-DAQ performs data transfers through the CPU |
| 1 You should use this setting to use the SC-2040 only as a preamplifier, without using track and |                                                |

You should use this setting to use the SC-2040 only as a preamplifier, without using track and hold.

When NI-DAQ uses DMA channels for data transfers, it must have an interrupt level available for the device performing the transfers. In this case, NI-DAQ uses interrupts for DMA controller reprogramming and exception handling.

### **Using This Function**

You can use this function to select the data transfer method for a given operation on a particular device. If you do not use this function, NI-DAQ decides on the data transfer method that typically takes maximum advantage of available resources.

All possible data transfer methods for the devices supported by NI-DAQ are listed below. If your device is not listed, none of the data transfer modes are applicable. The table also shows default values for data transfer modes and other settings. An asterisk indicates default value.

| Device Type | infoType                  | infoValue                                                     |
|-------------|---------------------------|---------------------------------------------------------------|
| AT-AO-6/10  | ND_DATA_XFER_MODE_AO_GR1  | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL*                         |
|             | ND_DATA_XFER_MODE_AO_GR2  | ND_INTERRUPTS*                                                |
| AT-DIO-32F  | ND_DATA_XFER_MODE_DIO_GR1 | ND_UP_TO_1_DMA_CHANNEL ND_UP_TO_2_DMA_CHANNELS*               |
|             | ND_DATA_XFER_MODE_DIO_GR2 | ND_UP_TO_1_DMA_CHANNEL*                                       |
| AT-DIO-32HS | ND_DATA_XFER_MODE_DIO_GR1 | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL ND_UP_TO_2_DMA_CHANNELS* |
|             | ND_DATA_XFER_MODE_DIO_GR2 | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL ND_UP_TO_2_DMA_CHANNELS* |

<sup>&</sup>lt;sup>2</sup> With ND\_NO\_TRACK\_AND\_HOLD.

| Device Type              | infoType                  | infoValue                                                     |
|--------------------------|---------------------------|---------------------------------------------------------------|
| PCI-DIO-32HS<br>PXI-6533 | ND_DATA_XFER_MODE_DIO_GR1 | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL*                         |
|                          | ND_DATA_XFER_MODE_DIO_GR2 | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL*                         |
|                          | ND_ACK_REQ_EXCHANGE_GR1   | ND_ON<br>ND_OFF*                                              |
|                          | ND_ACK_REQ_EXCHANGE_GR2   | ND_ON<br>ND_OFF*                                              |
|                          | ND_CLOCK_REVERSE_MODE_GR1 | ND_ON<br>ND_OFF*                                              |
|                          | ND_CLOCK_REVERSE_MODE_GR2 | ND_ON<br>ND_OFF*                                              |
| DAQCard-6533             | ND_DATA_XFER_MODE_DIO_GR1 | ND_INTERRUPTS*                                                |
|                          | ND_DATA_XFER_MODE_DIO_GR2 | ND_INTERRUPTS*                                                |
|                          | ND_ACK_REQ_EXCHANGE_GR1   | ND_ON<br>ND_OFF*                                              |
|                          | ND_ACK_REQ_EXCHANGE_GR2   | ND_ON<br>ND_OFF*                                              |
|                          | ND_CLOCK_REVERSE_MODE_GR1 | ND_ON<br>ND_OFF*                                              |
|                          | ND_CLOCK_REVERSE_MODE_GR2 | ND_ON<br>ND_OFF*                                              |
| AT-MIO-16E-1             | ND_DATA_XFER_MODE_AI      | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL ND_UP_TO_2_DMA_CHANNELS* |
|                          | ND_DATA_XFER_MODE_AO_GR1  | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL*                         |
|                          | ND_DATA_XFER_MODE_GPCTR0  | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL ND_UP_TO_2_DMA_CHANNELS* |
|                          | ND_DATA_XFER_MODE_GPCTR1  | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL ND_UP_TO_2_DMA_CHANNELS* |

| Device Type                                 | infoType                     | infoValue                                                       |
|---------------------------------------------|------------------------------|-----------------------------------------------------------------|
| AT-MIO-16E-2<br>NEC-MIO-16E-4               | ND_DATA_XFER_MODE_AI         | ND_INTERRUPTS<br>ND_UP_TO_1_DMA_CHANNEL*                        |
| AT-MIO-64E-3                                | ND_DATA_XFER_MODE_AO_GR1     | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL*                           |
|                                             | ND_DATA_XFER_MODE_GPCTR0     | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL ND_UP_TO_2_DMA_CHANNELS*   |
|                                             | ND_DATA_XFER_MODE_GPCTR1     | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL ND_UP_TO_2_DMA_CHANNELS*   |
| PCI/PXI MIO E Series devices and MIO        | ND_DATA_XFER_MODE_AI         | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL*                           |
| E Series devices for 1394                   | ND_DATA_XFER_MODE_AO_<br>GR1 | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL*                           |
|                                             | ND_DATA_XFER_MODE_<br>GPCTR0 | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL*                           |
|                                             | ND_DATA_XFER_MODE_<br>GPCTR1 | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL*                           |
|                                             | ND_AI_FIFO_INTERRUPTS        | ND_AUTOMATIC* ND_INTERRUPT_EVERY _SAMPLE ND_INTERRUPT_HALF_FIFO |
| PCI/PXI AI E Series<br>devices and E Series | ND_DATA_XFER_MODE_AI         | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL*                           |
| devices for 1394                            | ND_DATA_XFER_MODE_<br>GPCTR0 | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL*                           |
|                                             | ND_DATA_XFER_MODE_<br>GPCTR1 | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL*                           |
|                                             | ND_AI_FIFO_INTERRUPTS        | ND_AUTOMATIC* ND_INTERRUPT_EVERY _SAMPLE ND_INTERRUPT_HALF_FIFO |

| Device Type                                         | infoType                     | infoValue                                                      |
|-----------------------------------------------------|------------------------------|----------------------------------------------------------------|
| 671X devices                                        | ND_DATA_XFER_MODE_AO_<br>GR1 | ND_INTERRUPTS<br>ND_UP_TO_1_DMA_CHANNEL*                       |
|                                                     | ND_DATA_XFER_MODE_<br>GPCTR0 | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL*                          |
|                                                     | ND_DATA_XFER_MODE_<br>GPCTR1 | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL*                          |
| AT-AI-16XE-10<br>NEC-AI-16E-4                       | ND_DATA_XFER_MODE_<br>GPCTR0 | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL*                          |
| NEC-AI-16XE-50                                      | ND_DATA_XFER_MODE_<br>GPCTR1 | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL*                          |
|                                                     | ND_DATA_XFER_MODE_GPCTR1     | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL ND_UP_TO_2_DMA_CHANNELS*  |
| AT-MIO-16E-10<br>AT-MIO-16DE-10                     | ND_DATA_XFER_MODE_AI         | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL                           |
| AT-MIO-16XE-10<br>AT-MIO-16XE-50<br>NEC-MIO-16XE-50 | ND_DATA_XFER_MODE_AO_GR1     | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL ND_UP_TO_2_DMA_CHANNELS*  |
|                                                     | ND_DATA_XFER_MODE_GPCTR0     | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL ND_UP_TO_2_DMA_CHANNELS*  |
|                                                     | ND_DATA_XFER_MODE_GPCTR1     | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL ND_UP_TO_2_DMA_CHANNELS*  |
| DAQCard AI E Series                                 | ND_DATA_XFER_MODE_AI         | ND_INTERRUPTS*                                                 |
| devices                                             | ND_DATA_XFER_MODE_GPCTR0     | ND_INTERRUPTS*                                                 |
|                                                     | ND_DATA_XFER_MODE_GPCTR1     | ND_INTERRUPTS*                                                 |
|                                                     | ND_AI_FIFO_INTERRUPTS        | ND_AUTOMATIC* ND_INTERRUPT_EVERY_SAMPLE ND_INTERRUPT_HALF_FIFO |

| Device Type                    | infoType                 | infoValue                                                      |
|--------------------------------|--------------------------|----------------------------------------------------------------|
| DAQCard MIO E Series           | ND_DATA_XFER_MODE_AI     | ND_INTERRUPTS*                                                 |
| devices                        | ND_DATA_XFER_MODE_AO_GR1 | ND_INTERRUPTS*                                                 |
|                                | ND_DATA_XFER_MODE_GPCTR0 | ND_INTERRUPTS*                                                 |
|                                | ND_DATA_XFER_MODE_GPCTR1 | ND_INTERRUPTS*                                                 |
|                                | ND_AI_FIFO_INTERRUPTS    | ND_AUTOMATIC* ND_INTERRUPT_EVERY_SAMPLE ND_INTERRUPT_HALF_FIFO |
| DAQPad-MIO-16XE-50             | ND_DATA_XFER_MODE_AI     | ND_INTERRUPTS*                                                 |
|                                | ND_DATA_XFER_MODE_AO_GR1 | ND_INTERRUPTS*                                                 |
|                                | ND_DATA_XFER_MODE_GPCTR0 | ND_INTERRUPTS*                                                 |
|                                | ND_DATA_XFER_MODE_GPCTR1 | ND_INTERRUPTS*                                                 |
|                                | ND_AI_FIFO_INTERRUPTS    | ND_INTERRUPT_EVERY _SAMPLE                                     |
|                                |                          | ND_INTERRUPT_HALF_FIFO ND_AUTOMATIC*                           |
| 516 devices<br>DAQCard-500/700 | ND_DATA_XFER_MODE_AI     | ND_INTERRUPTS*                                                 |
| DAQCard-700                    | ND_AI_FIFO_INTERRUPTS    | ND_INTERRUPT_EVERY<br>_SAMPLE                                  |
|                                |                          | ND_INTERRUPT_HALF_FIFO ND_AUTOMATIC*                           |
| LPM devices                    | ND_DATA_XFER_MODE_AI     | ND_INTERRUPTS*                                                 |
| Lab-PC+<br>Lab-PC-1200         | ND_DATA_XFER_MODE_AI     | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL*                          |
| PCI-1200 (Rev. D and later)    | ND_DATA_XFER_MODE_AO_GR1 | ND_INTERRUPTS*                                                 |
|                                | ND_AI_FIFO_INTERRUPTS    | ND_INTERRUPT_EVERY _SAMPLE                                     |
|                                |                          | ND_INTERRUPT_HALF_FIFO ND_AUTOMATIC*                           |

| Device Type                                                                               | infoType                 | infoValue                                                         |  |
|-------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------|--|
| DAQCard-1200<br>DAQPad-1200<br>PCI-1200 (Rev. C and earlier)<br>SCXI-1200<br>DAQPad-6020E | ND_DATA_XFER_MODE_AI     | ND_INTERRUPTS*                                                    |  |
|                                                                                           | ND_DATA_XFER_MODE_AO_GR1 | ND_INTERRUPTS*                                                    |  |
|                                                                                           | ND_AI_FIFO_INTERRUPTS    | ND_AUTOMATIC*  ND_INTERRUPT_EVERY_ SAMPLE  ND_INTERRUPT_HALF_FIFO |  |
| Lab-PC-1200AI                                                                             | ND-DATA_XFER_MODE_AI     | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL*                             |  |
|                                                                                           | ND_AI_FIFO_INTERRUPTS    | ND_INTERRUPT_EVERY_<br>SAMPLE                                     |  |
|                                                                                           |                          | ND_INTERRUPT_HALF_FIFO ND_AUTOMATIC*                              |  |
| USB devices                                                                               | ND_SUSPEND_POWER_STATE   | ND_ACTIVE<br>ND_INACTIVE                                          |  |
| VXI-MIO-64E-1<br>VXI-MIO-64XE-10                                                          | ND_DATA_XFER_MODE_AI     | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL*                             |  |
|                                                                                           | ND_DATA_XFER_MODE_AO_GR1 | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL*                             |  |
|                                                                                           | ND_DATA_XFER_MODE_GPCTR0 | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL*                             |  |
|                                                                                           | ND_DATA_XFER_MODE_GPCTR1 | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL*                             |  |
| PCI-4451, PCI-4452,<br>PCI-4453, PCI-4454                                                 | ND_DATA_XFER_MODE_AO_GR1 | ND_UP_TO_1_DMA_CHANNEL                                            |  |
|                                                                                           | ND_DATA_XFER_MODE_GPCTR0 | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL                              |  |
|                                                                                           | ND_DATA_XFER_MODE_GPCTR1 | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL                              |  |

| Device Type                               | infoType                                                                                                                                                                                                | infoValue                             |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| PCI-6601                                  | ND_DATA_XFER_MODE_GPCTR0 ND_DATA_XFER_MODE_GPCTR1 ND_DATA_XFER_MODE_GPCTR2 ND_DATA_XFER_MODE_GPCTR3                                                                                                     | ND_INTERRUPTS ND_UP_TO_1_DMA_CHANNEL  |
| PCI-6602, PXI-6602,<br>PCI-6608, PXI-6608 | ND_DATA_XFER_MODE_GPCTR0 ND_DATA_XFER_MODE_GPCTR1 ND_DATA_XFER_MODE_GPCTR2 ND_DATA_XFER_MODE_GPCTR3 ND_DATA_XFER_MODE_GPCTR4 ND_DATA_XFER_MODE_GPCTR5 ND_DATA_XFER_MODE_GPCTR6 ND_DATA_XFER_MODE_GPCTR7 | ND_INTERRUPTS ND_UP_TO_1_ DMA_CHANNEL |

NI-DAQ uses interrupts and DMA channels for data transfers. The DMA data transfers are typically faster, so you might want to take advantage of them. Remember that the data transfer modes ND\_UP\_TO\_1\_DMA\_CHANNEL and ND\_UP\_TO\_2\_DMA\_CHANNELS do not reserve the DMA channel or channels for a particular operation; they just authorize NI-DAQ to use them, if they are available.

(AT-DIO-32F and AT-DIO-32HS) If you are performing high-speed digital input or output for group 1, setting ND\_DATA\_XFER\_MODE\_DIO\_GR1 to ND\_UP\_TO\_2\_DMA\_CHANNELS makes both DMA channels available and can increase your performance. Use ND\_DATA\_XFER\_MODE\_DIO\_GR2 to achieve the same results for the AT-DIO-32HS.

# Timeout\_Config

#### **Format**

status = Timeout\_Config (deviceNumber, timeout)

### **Purpose**

Establishes a timeout limit that is used by the synchronous functions to ensure that these functions eventually return control to your application. Examples of synchronous functions are DAQ\_Op, DAQ\_DB\_Transfer and WFM\_from\_Disk.

#### **Parameters**

#### Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |
| timeout      | i32  | number of timer ticks             |

#### Parameter Discussion

**timeout** is the number of timer ticks. The duration of a tick is 55 ms (0.055 s), and there are approximately 18 ticks/s.

-1: Wait indefinitely (timeout disabled).

0 to  $2^{31}$ : Wait **timeout** \* 0.055 s before returning.

## **Using This Function**

The synchronous functions do not return control to your application until they have accomplished their task. If you have indicated a large amount of data and/or a slow acquisition or generation rate, you might want to terminate the function prematurely, short of restarting your computer. By calling <code>Timeout\_Config</code> before calling the synchronous function, you can set an upper bound on the amount of time the synchronous function takes before returning. If the synchronous function returns the error code <code>timeOutError</code>, you know that the number of ticks indicated in the <code>timeout</code> parameter have elapsed and the synchronous function has returned because of the timeout.

The following is a list of the synchronous functions:

- DIG\_DB\_Transfer
- DAQ\_DB\_Transfer
- Lab\_ISCAN\_Op
- WFM DB Transfer
- DAQ\_Op

- Lab\_ISCAN\_to\_Disk
- WFM\_from\_Disk
- DAQ\_to\_Disk
- SCAN\_Op
- WFM\_Op
- SCAN\_to\_Disk

# WFM Chan Control

### **Format**

status = WFM\_Chan\_Control (deviceNumber, chan, operation)

# **Purpose**

Temporarily halts or restarts waveform generation for a single analog output channel.

#### **Parameters**

### Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |
| chan         | i16  | analog output channel             |
| operation    | i16  | pause or resume                   |

### Parameter Discussion

**chan** is the analog output channel to be paused or restarted.

Range: 0 or 1 for most devices.

0 through 5 for AT-AO-6. 0 through 9 for AT-AO-10.

**operation** selects the operation to be performed on the output channel.

**operation** = 2 (PAUSE): Temporarily halts waveform generation for the output

channel. The last voltage available on the analog output

channel is maintained indefinitely.

**operation** = 4 (RESUME): Restarts waveform generation for the output channel

previously halted by **operation** = PAUSE.

# **Using This Function**



**Note** This function does not support E Series or 671X devices.

When you have halted a waveform generation has been halted by executing PAUSE, the RESUME operation restarts the waveform exactly at the point in your buffer where it left off.

(AT-AO-6/10 only) You can use the PAUSE and RESUME operations on group 1 output channels only if at least one of the following conditions is true:

- Group 1 consists of a single output channel.
- Group 1 is using interrupts instead of DMA.

(AT-AO-6/10 only) You will see a FIFO lag effect when you pause or resume group 1 channels. When you execute PAUSE for a group 1 channel, the effective pause does not occur until the FIFO has finished writing all of the data remaining in the FIFO for the specified channel. The same is true for the RESUME operation on a group 1 channel. NI-DAQ cannot place data for the specified channel into the FIFO until the FIFO has emptied. Refer to the FIFO Lag Effect on the MIO E Series, AT-AO-6/10, PCI-4451, PCI-4453, and NI 4551 section of Chapter 3, Software Overview, of the NI-DAQ User Manual for PC Compatibles for a more detailed discussion.

# WFM\_Check

#### **Format**

status = WFM\_Check (deviceNumber, chan, wfmStopped, itersDone, pointsDone)

# **Purpose**

Returns status information concerning a waveform generation operation.

#### **Parameters**

### Input

| Name         | Туре | Description                         |
|--------------|------|-------------------------------------|
| deviceNumber | i16  | assigned by configuration utility   |
| chan         | i16  | number of the analog output channel |

# **Output**

| Name       | Туре | Description                                               |
|------------|------|-----------------------------------------------------------|
| wfmStopped | i16  | whether the waveform is still in progress                 |
| itersDone  | u32  | number of buffer iterations completed                     |
| pointsDone | u32  | number of points written for the current buffer iteration |

### **Parameter Discussion**

**chan** is the number of the analog output channel performing the waveform generation operation.

Range: 0 or 1 for most devices.

0 through 5 for AT-AO-6. 0 through 9 for AT-AO-10. 0 through 3 for PCI-6711. 0 through 7 for PCI-6713.

**wfmStopped** is a flag whose value indicates whether the waveform generation operation is still in progress. If the number of iterations indicated in the last WFM\_Load call is 0, the status is always 0.

0: Ongoing operation.

1: Complete operation.

**itersDone** returns the number of buffer iterations that have been completed.

**pointsDone** returns the number of points written to the analog output channels specified in **chan** for the current buffer iteration. For devices that have analog output FIFOs, **pointsDone** returns the number of points written to the FIFO if **chan** belongs to group 1. Refer to the following *Using This Function* section for more information.

Range: 0 to count - 1, where count is the parameter used in the last WFM\_Load call.



**Note** C Programmers—**wfmStopped**, **itersDone**, and **pointsDone** are pass-by-address parameters.

# **Using This Function**

WFM\_Check returns status information concerning the progress of a waveform generation operation. It is useful in determining when an operation has completed and when you can initiate a new operation.

A FIFO lag effect is seen for group 1 channels on devices with analog output FIFOs. **pointsDone** and **itersDone** indicate the number of buffer points currently written to the FIFO. There is a time lag from the point when the data is written to the FIFO to when the data is output to the DACs. This time lag is dependent upon the update rate. For example, if you had a buffer of 50 points that you wanted to send to analog output channel 0, the first call to WFM\_Check would have **itersDone** = 20. The FIFO would be filled up with 20 cycles of your 50-point buffer. Refer to the *FIFO Lag Effect on the MIO E Series*, *AT-AO-6/10*, *PCI-4451*, *PCI-4453*, and *NI 4551* section of Chapter 3, *Software Overview*, of the *NI-DAQ User Manual for PC Compatibles* for a more detailed discussion. **wfmStopped** is also affected by the FIFO lag, since **wfmStopped** indicates when the last point has actually been output.

On the PCI/PXI/CPCI/1394 E Series and 671X devices, you can effectively turn off the FIFO to eliminate the FIFO by effect. Refer to the AO\_Change\_Parameter function.



**Note** E Series devices, AT-AO-6/10, PCI-4451, PCI-4453, and 671X devices only—If you use FIFO mode waveform generation, pointsDone is always 0. If the generation is continuous (including pulsed waveform generation), the parameters wfmStopped and itersDone are always 0; otherwise wfmStopped and itersDone indicate the status of waveform generation operation.

# WFM\_ClockRate

### **Format**

status = WFM\_ClockRate (deviceNumber, group, which clock, timebase, interval, mode)

# **Purpose**

Sets an update rate and a delay rate for a group of analog output channels.

#### **Parameters**

### Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |
| group        | i16  | group of analog output channels   |
| whichclock   | i16  | the update or delay clock         |
| timebase     | i16  | resolution                        |
| interval     | u32  | timebase divisor                  |
| mode         | i16  | enables the delay clock           |

### **Parameter Discussion**

**group** is the group of analog output channels (see WFM\_Group\_Setup).

Range: 1 for most devices.

1 or 2 for the AT-AO-6/10.

whichclock indicates the type of clock:

- 0: The update clock (default).
- 1: The delay clock.
- 2: The delay clock prescalar 1 (E Series and 671X devices only).
- 3: The delay clock prescalar 2 (E Series and 671X devices only).

Notice that you can program the delay clock only on the 671X and E Series devices.

**timebase** is the timebase, or resolution, NI-DAQ uses in determining **interval**. **timebase** has the following possible values:

- -3: 20 MHz clock used as a timebase (50 ns) (E Series and 671X only).
- −1: 5 MHz clock used as timebase (200 ns resolution).
  - 0: If **whichclock** is equal to 0, the external clock is connected to EXTUPDATE on the AT-AO-6/10 and Lab and 1200 Series analog output devices, or to a pin

chosen through the Select\_Signal function on an E Series and 671X device (default is PFI5).

- 1: 1 MHz clock used as timebase (1 µs resolution).
- 2: 100 kHz clock used as timebase (10 µs resolution).
- 3: 10 kHz clock used as timebase (100 µs resolution).
- 4: 1 kHz clock used as timebase (1 ms resolution).
- 5: 100 Hz clock used as timebase (10 ms resolution).
- 11: External timebase (E Series and 671X devices only).

  Connect your external timebase to PFI5, by default, or use the Select\_Signal function to specify a different source.

On the Lab and 1200 Series analog output devices, **timebase** = 0 allows the signal applied to the EXTUPDATE pin on the I/O connector to control the DAC update. On the AT-AO-6/10, **timebase** = 0 allows the signal applied to the EXTDACUPDATE from the I/O connector or RTSI bus to control the DAC update. Whenever an active low pulse is detected on one of these pins, the DACs in the group are updated. When **timebase** = 0, the value of **interval** is irrelevant. **timebase** = 1 through 5 selects one of the five available internal clock signals to be used in determining the update interval.

**interval** indicates the number of timebase units. If **whichclock** is 0, **interval** indicates the number of **timebase** units of time that elapse between voltage updates at the analog output channels in the group. If **whichclock** is 1, **interval** indicates the number of timebase units of time that elapse after reaching the last point in DAC FIFO before the next cycle begins. If **whichclock** is 2, interval indicates delay interval prescalar 1. If **whichclock** is 3, interval indicates delay interval prescalar 2.

Range: 2 through 16,777,216 for E Series and 671*X* devices.

 $2\ through\ 65{,}535\ for\ the\ LabPC+,\ SCXI-1200,\ DAQPad-1200,\ and$ 

DAQCard-1200.

The internal timebases available on the E Series and 671X devices are 20 MHz and 100 kHz. If you use a **timebase** other than -3 or 2 for these devices, NI-DAQ performs the appropriate translation, if possible.



**Note** If you are using an SCXI-1200 with remote SCXI, the maximum rate depends on the baud rate setting and updateRate. Refer to the SCXI-1200 User Manual for more details.

mode depends on the whichclock parameter.

Range: 0, 1, or 2 for E Series and 671*X* devices.

0 for all other devices.

#### whichclock = 0:

When **whichclock** is 0 (update clock), mode should be 0 for all other devices except for E Series and 671*X* devices. For these devices, **mode** is used to indicate the time of change of update rate, when a waveform is already in progress. If no waveform is in progress, **mode** is

ignored. Set the argument **mode** to 0 to indicate that you wish to change the update rate immediately. For E Series and 671*X* devices you cannot change the update rate when using FIFO pulsed waveform generation and waveform is already in progress.

#### which clock = 1:

When **whichclock** is 1 (delay clock), mode indicates whether delay clock should be enabled or disabled. When **mode** is 1, NI-DAQ enables the delay clock. If you want to use FIFO pulse-waveform generation, you must set **mode** to 1. Notice that, if you enable delay clock, you must load finite iterations. If you load infinite iterations, NI-DAQ returns error code **fifoModeError**.

#### which clock = 2:

mode is ignored in this case.

#### which clock = 3:

mode is ignored in this case.

If any of these conditions is not met, NI-DAQ returns **updateRateChangeError**.

# **Using This Function**

You can calculate the actual update rate in seconds from the timebase resolution selected by **timebase** and **interval**, as shown by the following example.

Suppose that **timebase** equals 2. On an MIO device, this value selects the 100 kHz internal clock signal, which provides counter 2 with a rising edge to count every  $10 \mu s$ , thus selecting the  $10 \mu s$  resolution. On Lab and 1200 Series analog output devices, if the total update interval given by (timebase resolution) \* **interval** is greater than  $65,535 \mu s$ , it programs counter B0 (if it is not busy in a data acquisition or a counting operation) to produce a clock of 100 kHz, which is used by the counter producing the update interval.

Also suppose that **interval** equals 25. This value indicates that counter 2 must count 25 rising edges of its input clock signal before issuing a request to produce a new voltage at the analog output channels.

The actual update rate in seconds is then  $25 * 10 \mu s = 250 \mu s$ . Thus, a new voltage is produced at the output channels every  $250 \mu s$ .

The frequency of a waveform is related to the update rate and the number of points in the buffer (indicated in an earlier call to WFM\_Load) as follows, where the buffer contains one cycle of the waveform:

frequency = update rate/points in the buffer

You can make repeated calls to WFM\_ClockRate to change the update rate of a waveform in progress. You cannot change the internal timebase already being used by the device, only the interval, and the following conditions must be met:

- whichclock is 0.
- You are not using FIFO pulsed waveform generation.
- The timebase has the value it had when you called this function before starting the waveform generation.
- At least one update was performed using the previously selected update interval to change the interval immediately; that is, when **mode** = 0.

If any of these conditions is not met, NI-DAQ returns **updateRateChangeError**.

To perform FIFO pulse waveform generation on an E Series device, you must use the same timebase for update and delay clock. You must specify the delay time as the product of four numbers:

delay time = timebase period \* delay interval \* delay interval prescalar 1 \* delay interval prescalar 2.

In this formula,

- Timebase period is a single period corresponding to the selected timebase (for example, 50 ns when the 20 MHz clock is used).
- Delay interval corresponds to the interval argument in this function when whichclock = 1.
- Delay interval prescalar 1 corresponds to the interval argument you use in this function when **whichclock** = 2. If you do not call this function with **whichclock** = 2, this interval is 1.
- Delay interval prescalar 2 corresponds to the interval argument you use in this function when **whichclock** = 3. If you do not call this function with **whichclock** = 3, this interval is 2.

When **whichclock** = 2, NI-DAQ ignores **timebase** and **mode** arguments. Legal range for delay interval prescalar 1 is 1 through  $2^{24}$ .

When **whichclock** = 3, NI-DAQ ignores **timebase** and **mode** arguments. Legal range for delay interval prescalar 2 is 2 through  $2^{24}$ .

# **Example**

Let us compute the delay time after the following sequence of function calls:

```
WFM_ClockRate(deviceNumber, group, 0, -3, 1000, 0)
WFM_ClockRate(deviceNumber, group, 1, -3, 4000, 1)
```

```
WFM_ClockRate(deviceNumber, group, 2, -3, 7000, 1)
```

In this case, timebase period is 50 ns, delay interval is 4,000, delay interval prescalar 1 is 7,000, delay interval prescalar 2 is 2, so the delay time is 50 ns \* 4000 \* 7000 \* 2 = 2,800,000,000 ns = 2.8 s.

Notice that the maximum possible delay time with the 20 MHz internal timebase is 50 ns \*  $2^{24}$  \*  $2^{24}$  \*  $2^{24}$  = 7.5 million years.

# WFM\_DB\_Config

### **Format**

status = WFM\_DB\_Config (deviceNumber, numChans, chanVect, dbMode, oldDataStop partialTransferStop)

# **Purpose**

Enables and disables the double-buffered mode of waveform generation.

#### **Parameters**

### Input

| Name                | Туре  | Description                                                 |
|---------------------|-------|-------------------------------------------------------------|
| deviceNumber        | i16   | assigned by configuration utility                           |
| numChans            | i16   | number of analog output channels                            |
| chanVect            | [i16] | channel numbers                                             |
| dbMode              | i16   | enables or disables the double-buffered mode                |
| oldDataStop         | i16   | allow or disallow regeneration of data                      |
| partialTransferStop | i16   | whether to stop when a half buffer is partially transferred |

#### **Parameter Discussion**

numChans indicates the number of analog output channels specified in the array chanVect.

Range: 1 or 2 for most devices.

1 through 4 for PCI-6711. 1 through 6 for AT-AO-6.

1 through 8 for PCI-6713. 1 through 10 for AT-AO-10.

chanVect is the user array of channel numbers.

Channel number range:

0 or 1 for most devices.

0 through 3 for PCI-6711.

0 through 5 for AT-AO-6.

0 through 7 for PCI-6713.

0 through 9 for AT-AO-10.

**dbMode** is a flag whose value either enables or disables the double-buffered mode of waveform generation.

- 0: Double-buffered mode disabled.
- 1: Double-buffered mode enabled.

**oldDataStop** is a flag whose value enables or disables the mechanism whereby NI-DAQ stops the waveform generation when NI-DAQ is about to generate old data (data that has already been generated) a second time. Setting **oldDataStop** to 1 ensures seamless double-buffered waveform generation.

- 0: Allow regeneration of data.
- 1: Disallow regeneration of data.

partialTransferStop is a flag indicating whether to stop waveform generation when NI-DAQ partially transfers half buffer to the analog output buffer using a WFM\_DB\_Transfer call. NI-DAQ stops the waveform when NI-DAQ has output the partial half buffer.

- 0: Allow partial transfers of half buffers.
- 1: Stop waveform generation after partial transfers of half buffers.

### **Using This Function**

Use WFM\_DB\_Config to turn double-buffered waveform generation on and off. With the double-buffered mode enabled, you can use WFM\_DB\_Transfer to transfer new data into the waveform buffer (selected by WFM\_Load) as NI-DAQ generates the waveform. Because of the extra bookkeeping involved, unless you are going to use WFM\_DB\_Transfer, you should leave double buffering disabled. Refer to Chapter 5, NI-DAQ Double Buffering, of the NI-DAQ User Manual for PC Compatibles for a detailed discussion of double buffering.

If you are using DMA, enabling **partialTransferStop** (or **oldDataStop**) causes an artificial split in the waveform buffer, which requires DMA reprogramming at the end of each half buffer. Therefore, you should enable these options only if necessary.

(AT-AO-6/10 only) For double-buffered waveform generation with group 1 channels using DMA: If **oldDataStop** is enabled, partial transfers of half buffers (using WFM\_DB\_Transfer calls) are allowed only if **partialTransferStop** is enabled.

For double-buffered waveform generation with group 1: The total number of points for all the group 1 channels (specified in WFM\_Load) should be at least twice the size of the FIFO. Refer to the *AT-AO-6/10 User Manual* for information on the AT-AO-6/10 FIFO size.

# WFM\_DB\_HalfReady

### **Format**

status = WFM\_DB\_HalfReady (deviceNumber, numChans, chanVect, halfReady)

### **Purpose**

Checks if the next half buffer for one or more channels is available for new data during a double-buffered waveform generation operation. You can use WFM\_DB\_HalfReady to avoid the waiting period that can occur with the double-buffered transfer functions.

Chapter 2

### **Parameters**

### Input

| Name         | Type  | Description                       |
|--------------|-------|-----------------------------------|
| deviceNumber | i16   | assigned by configuration utility |
| numChans     | i16   | number of analog output channels  |
| chanVect     | [i16] | channel numbers                   |

# Output

| Name      | Type | Description                                            |
|-----------|------|--------------------------------------------------------|
| halfReady | *i16 | whether the next half buffer is available for new data |

### **Parameter Discussion**

**numChans** indicates the number of analog output channels specified in the array **chanVect**.

**chanVect** is the user array of channel numbers indicating which analog output channels are to be checked to see if the next half buffer for that channel is available.

Channel number range:

0 or 1 for most devices.

0 through 3 for PCI-6711.

0 through 5 for AT-AO-6.

0 through 7 for PCI-6713.

0 through 9 for AT-AO-10.

halfReady indicates whether the next half buffer for all of the channels specified in chanVect is available for new data. When halfReady equals 1, you can use WFM\_DB\_Transfer to write new data to the next half buffer(s) immediately. When halfReady equals 0, the next half buffer for one or more channels is not ready for new data.



**Note** C Programmers—**halfReady** is a pass-by-address parameter.

# **Using This Function**

Double-buffered waveform generation functions cyclically output data from the waveform buffer (specified in WFM\_Load). The waveform buffer is divided into two equal halves so that NI-DAQ can write data from one half of the buffer to the output channels while filling the other half of the buffer with new data. This mechanism makes it necessary to write to both halves of the waveform buffer alternately so that NI-DAQ does not output the old data. Use WFM\_DB\_Transfer to transfer new data to a waveform buffer half. Both of these functions, when called, wait until NI-DAQ can complete the data transfer before returning. During slower paced waveform generation operations, this waiting period can be significant. You can use WFM\_DB\_HalfReady to call the transfer functions only when NI-DAQ can make the transfer immediately.

Refer to the *Double-Buffered Waveform Generation Applications* section, in Chapter 5, *NI-DAQ Double Buffering*, of the *NI-DAQ User Manual for PC Compatibles*, for an explanation of double buffering.

#### **Format**

status = WFM\_DB\_Transfer (deviceNumber, numChans, chanVect, buffer, count)

# **Purpose**

Transfers new data into one or more waveform buffers (selected in WFM\_Load) as waveform generation is in progress. WFM\_DB\_Transfer waits until NI-DAQ can transfer the data from the buffer to the waveform buffers.

Chapter 2

### **Parameters**

### Input

| Name         | Туре  | Description                        |
|--------------|-------|------------------------------------|
| deviceNumber | i16   | assigned by configuration utility  |
| numChans     | i16   | number of analog output channels   |
| chanVect     | [i16] | channel numbers                    |
| count        | u32   | number of new data points          |
| buffer       | [i16] | new data that is to be transferred |

### **Parameter Discussion**

numChans indicates the number of analog output channels specified in the array chanVect.

Range: 1 or 2 for most devices.

1 through 4 for PCI-6711.

1 through 6 for AT-AO-6.

1 through 8 for PCI-6713.

1 through 10 for AT-AO-10.

**chanVect** is the array of channel numbers indicating which analog output channels are to receive new data from the buffer.

Channel number range:

0 or 1 for most devices.

0 through 3 for PCI-6711.

0 through 5 for AT-AO-6.

0 through 7 for PCI-6713.

0 through 9 for AT-AO-10.

buffer is the array of new data that is to be transferred into the waveform buffer(s). WFM\_DB\_Transfer can transfer new data to more than one waveform buffer, except on PCI/PXI/1394 E Series and 671X devices. For example, if two channels use separate waveform buffers (you called WFM\_Load once for each channel), you can use a single call to WFM\_DB\_Transfer to transfer data to both waveform buffers. If numChans is greater than 1, the data in the buffer must be interleaved and data for each channel must follow the order given in chanVect.

count holds the number of new data points contained in buffer. When you make repeated calls to WFM\_DB\_Transfer during a waveform generation, it is most efficient if the amount of data transferred for each channel is equal to one-half the number of data points for the channel in the channel's waveform buffer. For example, suppose channel 0 is using a waveform buffer of size 100 and channel 1 are each is using a waveform buffer of size 100. WFM\_DB\_Transfer should transfer 50 to channel 0 and 50 to channel 1, giving count a value of 100. If NI-DAQ makes transfers to more than one waveform buffer, it is more efficient if all the waveform buffers contain the same number of samples for each channel.

(AT-AO-6/10 only) For group 1 channels using DMA, if you enable **oldDataStop**, transfers of less than half the number of samples in the circular waveform buffer are only allowed if you enable **partialTransferStop**.

# **Using This Function**

Use WFM\_DB\_Transfer to transfer new data into one or more waveform buffers as waveform generation is in progress. The double-buffered mode, with **oldDataStop** set to 1, ensures that NI-DAQ generates each data point for a specified output channel exactly once. If **partialTransferStop** is enabled, a transfer of less than half of the waveform buffer size of a channel stops the waveform generation when NI-DAQ has output the partial half buffer.

#### Format

status = WFM\_from\_Disk (deviceNumber, numChans, chanVect, fileName, startPt, endPt, iterations, rate)

# **Purpose**

Assigns a disk file to one or more analog output channels, selects the rate and the number of times the data in the file is to be generated, and starts the generation. This function always waits for completion before returning, unless you call Timeout\_Config.

Chapter 2

### **Parameters**

# Input

| Name         | Туре  | Description                                           |
|--------------|-------|-------------------------------------------------------|
| deviceNumber | i16   | assigned by configuration utility                     |
| numChans     | i16   | number of analog output channels                      |
| chanVect     | [i16] | channel numbers                                       |
| fileName     | STR   | name of the data file containing the waveform data    |
| startPt      | u32   | place in a file where waveform generation is to begin |
| endPt        | u32   | place in a file where waveform generation is to end   |
| iterations   | u32   | number of times generated                             |
| rate         | f64   | desired rate in points per second                     |

### **Parameter Discussion**

**numChans** indicates the number of analog output channels specified in the array **chanVect**.

**chanVect** is the array of channel numbers indicating which analog output channels are to receive output data from the file.

Channel number range:

0 or 1 for most devices.

0 through 3 for PCI-6711.

0 through 5 for AT-AO-6.

0 through 7 for PCI-6713.

0 through 9 for AT-AO-10.

**fileName** is the name of the data file containing the waveform data. For MIO devices (except 6052E devices, PCI-MIO-16XE-10, and VXI-MIO-64XE-10), AT-AO-6/10, and Lab and 1200 Series analog output devices, the file must contain integer data ranging from 0 to 4,095 for unipolar mode and from –2,048 to 2,047 for bipolar mode. For 6052E devices and PCI-MIO-16XE-10, the file must contain integer data ranging from 0 to 65,535 for unipolar mode, and from –32,768 to +32,767 for bipolar mode.

For DSA devices, the file must contain integer data ranging from -131,072 to +131,071. Each data point is 32 bits wide but only the most significant 18 bits are used. The lower 14 bits are ignored and should be zero. You can move each data point into the upper 18 bits with a left shift operation or by multiplying it by 16,384.

**startPt** is the place in a file where waveform generation is to begin.

Range: 1 through the number of samples in the file.

**endPt** is the place in a file where waveform generation is to end. A value of 0 for **endPt** has a special meaning. When **endPt** equals 0, waveform generation proceeds to the end of the file and wrap around to **startPt** if **iterations** is greater than 1.

Range: 1 through the number of samples in the file.

**iterations** is the number of times the data in the file is generated.

Range:  $1 \text{ through } 2^{32} - 1.$ 

rate is the rate of waveform generation you want in points per second (pts/s). A value of 0.0 for rate means that external update pulses (applied to EXTUPDATE for the AT-AO-6/10 and Lab and 1200 Series analog output devices) determine the waveform generation rate. If you are using an E Series or 671X device, see the Select\_Signal function for information about the external timing signals.

Range: 0.0 for external update or approximately 0.0015 to 500,000 pts/s. Your maximum rate depends on your device type and your computer system.

If the number of points that represent one cycle of the waveform equals **count**, the frequency of the generated waveform is related to the **rate** by this the following formula:

frequency = (rate/count) cycles per second

# **Using This Function**

WFM\_from\_Disk initiates a waveform generation operation. NI-DAQ writes the portion of data in the file determined by **startPt** and **endPt** to the specified analog output channels at a rate as close to the rate you want as the hardware permits (see WFM\_Rate for further explanation). If **numChans** is greater than 1, NI-DAQ writes the data values from file to the DAC in ascending order. WFM\_from\_Disk always waits until the requested number of file iterations is complete before returning.

If you have changed the analog output configuration from the defaults by changing the jumpers on the device, you must call AO\_Configure to set the software copies of the settings prior to calling WFM\_from\_Disk.

NI-DAQ ignores the group settings made by calling WFM\_Group\_Setup when you call WFM\_from\_Disk. WFM\_from\_Disk and the settings are not changed after you execute WFM from Disk.

For Lab and 1200 Series analog output devices, if the rate is smaller than 15.26 pts/s and counter B0 is busy in a data acquisition or counting operation, waveform generation cannot proceed.

On Am9513-based devices, to externally trigger a waveform generation operation, you can do so by first changing the gating mode of the counter NI-DAQ uses.

WFM\_from\_Disk uses either the default gating mode (none) or the gating mode you specify through the CTR\_Config function. You need to connect your trigger signal to the gate pin on the I/O connector. Refer to the CTR\_Config function description for details.

On a variety of E Series or 671X devices, you can externally trigger a waveform generation in a variety of ways. Refer to the Select\_Signal function for more details.

# WFM\_Group\_Control

#### **Format**

status = WFM\_Group\_Control (deviceNumber, group, operation)

# **Purpose**

Controls waveform generation for a group of analog output channels.

#### **Parameters**

### Input

| Name         | Туре | Description                       |
|--------------|------|-----------------------------------|
| deviceNumber | i16  | assigned by configuration utility |
| group        | i16  | group of analog output channels   |
| operation    | i16  | operation to be performed         |

#### Parameter Discussion

**group** is the group of analog output channels (see WFM\_Group\_Setup).

Range: 1 for most devices.

1 or 2 for the AT-AO-6/10.

**operation** selects the operation NI-DAQ is to perform for the group of output channels.

**operation** = 0 (CLEAR): Terminates a waveform operation for the group of analog output channels. The last voltage produced at the DAC is maintained

indefinitely. After you execute CLEAR for an analog output group, you must call WFM\_Load before you can restart waveform

generation using **operation** = START.

**operation** = 1 (START): Initiates waveform generation at the analog output channels in

group. Your application must call **operation** = CLEAR before terminating, if START is executed. If you do not execute CLEAR,

unpredictable behavior might result.



**Note** If you invoke this function to clear continuous waveform generation that was stopped previously because of an underflow error, WFM\_Group\_Control does not report the occurrence of the underflow error. If you want to check for this type of error, invoke function WFM\_Check prior to invoking WFM\_Group\_Control to clear waveform generation.



**Note** For Lab and 1200 Series analog output devices, if the rate is smaller than 15.26 pts/s and counter B0 is busy in a data acquisition operation, waveform generation cannot proceed.

**operation** = 2 (PAUSE): Temporarily halts waveform generation for the group of

channels. NI-DAQ maintains the last voltage written to the

DAC indefinitely.



**Note** This value of operation = 2 is not supported for the AT bus E Series devices (except the AT-MIO-16XE-10), the PCI-4451, the NI 4551, or the PCI-4453.

**operation** = 4 (RESUME): Restarts waveform generation for the group of channels that previously halted by **operation** = PAUSE.



**Note** This value of operation = 4 is not supported for the AT bus E Series devices (except the AT-MIO-16XE-10), the PCI-4451, the NI 4551, or the PCI-4453.

When you have halted a waveform generation by executing PAUSE, RESUME restarts the waveform exactly at the point in your buffer where it left off. If *n* iterations of the buffer remained to be completed when you executed **operation** = PAUSE, those *n* iterations are generated after NI-DAQ executes RESUME. RESUME restarts waveform generation if NI-DAQ has completed the number of iterations specified in WFM\_Load.

# WFM\_Group\_Setup

### **Format**

status = WFM\_Group\_Setup (deviceNumber, numChans, chanVect, group)

# **Purpose**

Assigns one or more analog output channels to a waveform generation group. A call to WFM\_Group\_Setup is only required for the AT-AO-6/10. By default, both analog output channels for the MIO devices and the Lab-PC+ are in group 1.

#### **Parameters**

### Input

| Name         | Туре  | Description                       |
|--------------|-------|-----------------------------------|
| deviceNumber | i16   | assigned by configuration utility |
| numChans     | i16   | number of analog output channels  |
| chanVect     | [i16] | channel numbers                   |
| group        | i16   | group number                      |

#### Parameter Discussion

 ${\bf numChans} \ indicates \ the \ number \ of \ analog \ output \ channels \ specified \ in \ the \ array \ chanVect.$ 

A 0 clears the channel assignments for group.

Range: 0 through 2 for most devices.

 $0 \ through \ 4 \ for \ PCI-6711.$ 

0 through 6 for AT-AO-6.

0 through 8 for PCI-6713.

0 through 10 for AT-AO-10.

**chanVect** is your array of channel numbers indicating which analog output channels are in a group.

Channel number range:

0 or 1 for most devices.

0 through 5 for AT-AO-6.

0 through 9 for AT-AO-10.

0 through 3 for PCI-6711.

0 through 7 for PCI-6713.

**group** is the group number.

Range: 1 for most devices.

1 or 2 for AT-AO-6/10.

# **Using This Function**

For the AT-AO-6/10, you can assign analog output channels to one of two waveform generation groups. Each group has a separate update clock source. You can assign different update rates to each group by calling WFM\_ClockRate.

Chapter 2

#### Rules for This Function

You cannot split channel pairs between groups (channel pairs are 0 and 1, 2 and 3, 4 and 5, and so on) for the AT-AO-6/10. For example, you can assign channel 4 alone to group 1, but you cannot then assign channel 5 to group 2.

The rules for the AT-AO-6 group 1 assignments are as follows:

- 0 to n, where  $n \le 5$  and the channel list is consecutive, or any one channel.
- Use interrupts/DMA with FIFO.
- Interrupt when the FIFO is half full; thus, group 1 will be faster than group 2, even when interrupts are used for both.
- If more than one channel is in the channel list, then channel 0 must be the first channel in that list.

The rules for AT-AO-6 group 2 assignments are as follows:

- Channels 0 or 1 cannot be in group 2.
- Uses interrupts only.

The rules for AT-AO-10 group assignments are as follows:

- All rules of assignment for the AT-AO-6 apply to the AT-AO-10.
- 0 to n, where  $n \le 9$  and the channel list is consecutive, or any one channel.
- If exactly one channel is assigned to group 1, it cannot be channel 8 or 9.

# WFM Load

### Format

status = WFM Load (deviceNumber, numChans, chanVect, buffer, count, iterations, mode)

# Purpose

Assigns a waveform buffer to one or more analog output channels and indicates the number of waveform cycles to generate.

#### **Parameters**

# Input

| Name         | Туре  | Description                                                         |
|--------------|-------|---------------------------------------------------------------------|
| deviceNumber | i16   | assigned by configuration utility                                   |
| numChans     | i16   | number of analog output channels                                    |
| chanVect     | [i16] | channel numbers                                                     |
| buffer       | [i16] | values that are converted to voltages by DACs                       |
| count        | u32   | number of points in the buffer                                      |
| iterations   | u32   | number of times the waveform generation steps through <b>buffer</b> |
| mode         | i16   | enables or disables FIFO mode                                       |

### Parameter Discussion

numChans indicates the number of analog output channels specified in the array chanVect.

1 or 2 for most devices. Range:

1 through 4 for PCI-6711. 1 through 6 for AT-AO-6.

1 through 8 for PCI-6713.

1 through 10 for AT-AO-10.

**chanVect** is the array of channel numbers indicating to which analog output channels the buffer to be assigned.

Channel number range:

0 or 1 for most devices.

0 through 5 for AT-AO-6.

0 through 9 for AT-AO-10.

0 through 3 for PCI-6711.

0 through 7 for PCI-6713.

**buffer** is an array of integer values that are converted to voltages by DACs. If your device has 12-bit DACs, the data ranges from 0 to 4,095 in unipolar mode and from -2,048 to 2,047 in bipolar mode. If your device has 16-bit DACs, the data ranges from 0 to 65,535 in unipolar mode and from -32,768 to +32,767 in bipolar mode.



**Note** For all devices except the National Instruments devices, data points for the output channels need to be interleaved when you set up the buffer parameter.

The DSA devices have 18-bit DACs and operate only in bipolar mode. Data ranges from –131,072 to +131,071. For DSA devices each buffer element is 32 bits wide. Each data point goes in the upper 18 bits of its buffer element. You should set the lower 14 bits to 0. You can move each data point into the upper 18 bits with a left shift operation or by multiplying it by 16,384.

**count** is the number of points in your buffer. When you use interleaved waveform generation, **count** should be a multiple of **numChans** and not less than 2 \* **numChans**. When you use double-buffered interleaved waveform generation, **count** should not be less than 4 \* **numChans**.

Range: 1 through  $2^{32} - 1$  (most devices).

2 through 2<sup>24</sup> (E Series, 671*X* devices, PCI-4451, and PCI-4453).

On the PCI-61XX and 671X devices, the buffer must contain an even number of samples because of the 32-bit FIFO.

**iterations** is the number of times the waveform generation steps through **buffer**. A value of 0 means that waveform generation proceeds indefinitely.

Range:  $0 \text{ through } 2^{32} - 1.$ 

Enabling FIFO mode waveform generation places some restrictions on the allowable values for the **iterations** parameter. Refer to the **mode** parameter description below.

Enabling pulsed FIFO mode waveform generation by turning on the delay clock via WFM\_ClockRate places two additional restrictions on the allowed values of **iterations** and also changes its meaning. Setting **iterations** to 0 is not allowed. Also, instead of determining the number of times the waveform generation steps through **buffer** before stopping, pulsed FIFO mode causes the **iterations** setting to determine the number of times the data in the FIFO is generated before pausing for the specified delay. Once the delay has elapsed, the data in the FIFO is generated again. In other words, when you use pulsed FIFO mode, the value of **iterations** determines the number of cycles through the FIFO that occurs between delays, and the pattern of waveform followed by delay is followed by waveform and so on, which goes on indefinitely.

**mode** allows you to indicate whether to use FIFO mode waveform generation, if your device has a FIFO.

Range: 0 or 1 for most devices.

0 for all other devices.

1, 2, 3, or 4 for the NI 5411 devices.



**Note** To determine the size of the analog output FIFO on your board, refer to your hardware manual.

When **mode** is 0, NI-DAQ does not use FIFO mode waveform generation. When **mode** is 1 and all of the following conditions are satisfied, NI-DAQ uses FIFO mode waveform generation:

- The waveform buffer is small enough to reside in the DAC FIFO. If you load more than one channel, the total number of points must be less than or equal to the FIFO size.
- You have not enabled double-buffered waveform generation mode.
- For the AT-AO-6/10, iterations must be 0.
- All the channels listed in **chanVect** must belong to group 1.
- If more than one channel of group 1 is loaded, the number of points per channel and iterations are the same for each channel. Also, all the channels of group 1 must have the same **mode**.

NI-DAQ returns error **fifoModeError** if any of the previously described conditions is not satisfied and **mode** is 1. If you call the WFM\_Load function several times to load different channels, the WFM\_Group\_Control function checks for conditions 1 and 5.



**Note** On PCI/PXI/CPCI/1394 E Series and 671X devices, you cannot load multiple buffers for a single group.

When **mode** is 1 and you have enabled the delay clock (see the WFM\_ClockRate function), the waveform generation proceeds until it is stopped by software. In this case, **iterations** indicates how many times the waveform is generated between delays.

# **Using This Function**

WFM\_Load assigns your buffer to a selected analog output channel or channels. The values in this **buffer** are translated to voltages by the D/A circuitry and produced at the output channel when you have called WFM\_Group\_Control (**operation** = START) for a channel group. To change the shape of a waveform in progress, use WFM\_DB\_Config to enable double-buffered mode and WFM\_DB\_Transfer to transfer data into the waveform buffer. When loading buffers for double-buffered mode, all of the channel buffers should be the same size.

WFM\_Load assigns your buffer to a selected analog output channel or channels. The values in this **buffer** are translated to voltages by the digital-to-analog (D/A) circuitry and produced at the output channel when you have called WFM\_Group\_Control (**operation** = START) for a channel group. If you have changed the analog output configuration from the defaults by changing the jumpers on the device, you must call AO\_Configure to set the software copies of the settings prior to calling WFM\_Group\_Control (**operation** = START). You can make repeated calls to WFM\_Load to change the shape of a waveform in progress, except on E Series devices and SCXI DAQ modules used with remote SCXI; if you make repeated calls using these devices, this function will return a **transferInProgError**. You also must use the parameter values for **numChans** and **chanVect** used in the call to WFM\_Load prior to starting the waveform when making calls to WFM\_Load while a waveform is in progress.

The DSA devices use 32-bit data buffers. If you are using C or Delphi, you will need to type cast your i32 array to i16 when you call WFM\_Load. If you are using Visual Basic, you should use the nidaqr32.bas file (instead of nidaq32.bas) to relax type checking on **buffer**. The DSA devices use the upper 18 bits of each buffer element. The lower 14 bits are ignored and you should set them to 0.

# WFM\_Op

### **Format**

status = WFM\_Op (deviceNumber, numChans, chanVect, buffer, count, iterations, rate)

# **Purpose**

Assigns a waveform buffer to one or more analog output channels, selects the rate and the number of times the data in the buffer is to be generated, and starts the generation. If the number of buffer generations is finite, WFM\_Op waits for completion before returning, unless you call Timeout\_Config.

### **Parameters**

# Input

| Name         | Туре  | Description                                                         |  |
|--------------|-------|---------------------------------------------------------------------|--|
| deviceNumber | i16   | assigned by configuration utility                                   |  |
| numChans     | i16   | number of analog output channels                                    |  |
| chanVect     | [i16] | channel numbers                                                     |  |
| buffer       | [i16] | values that are converted to voltages by DACs                       |  |
| count        | u32   | number of points in the buffer                                      |  |
| iterations   | u32   | number of times the waveform generation steps through <b>buffer</b> |  |
| rate         | f64   | desired rate in points per second                                   |  |

### **Parameter Discussion**

numChans indicates the number of analog output channels specified in the array chanVect.

**chanVect** is the array of channel numbers indicating which analog output channels are to receive output data from the buffer.

Channel number range:

0 or 1 for most devices.

0 through 5 for AT-AO-6.

0 through 9 for AT-AO-10.

0 through 3 for PCI-6711.

0 through 7 for PCI-6713.

**buffer** is an array of integer values that DACs convert to voltages. If your device has 12-bit DACs, data ranges from 0 to 4,095 in unipolar mode and from –2,048 to 2,047 in bipolar mode. If your device has 16-bit DACs, data ranges from 0 to 65,535 in unipolar mode and from –32,768 to +32,767 in bipolar mode.

The DSA devices have 18-bit DACs and operate in bipolar mode only. Data ranges from –131,072 to +131,071. For DSA devices each buffer element is 32 bits wide. Each data point goes in the upper 18 bits of its buffer element. You should set the lower bits to zero.

**count** is the number of points in your buffer. When NI-DAQ is using interleaved waveform generation, **count** should be a multiple of **numChans** and not less than 2 \* **numChans**.

Range: 1 through  $2^{32} - 1$  (except E Series devices). 2 through  $2^{24}$  (E Series and 671X devices).

On PCI-61XX and 671X devices, the buffer must contain an even number of samples because of the 32-bit FIFO.

**iterations** is the number of times the waveform generation steps through **buffer**. A value of 0 means that waveform generation proceeds indefinitely.

Range:  $0 \text{ through } 2^{32} - 1.$ 

**rate** is the rate of waveform generation you want in points per second (pts/s). A value of 0.0 for **rate** means that external update pulses (applied to EXTUPDATE for the AT-AO-6/10 and Lab and 1200 Series analog output devices, and to PFI Pin 5 on E Series and 671*X* devices) will determine the waveform generation rate.

Range: 0.0 for external update or approximately 0.0015 to 500,000 pts/s.

Your maximum **rate** depends on your device type and your computer system. If the number of points that represents represent one cycle of the waveform equals **count**, the frequency of the generated waveform is related to the rate by this the following formula:

frequency = (rate/count) cycles per second

# **Using This Function**

WFM\_Op initiates a waveform generation operation. NI-DAQ writes the data in the buffer to the specified analog output channels at a rate as close to the rate you want as the specified rate hardware permits (see WFM\_Rate for a further explanation). With the exception of indefinite waveform generation, WFM\_Op waits until NI-DAQ completes the waveform generation is complete before returning (that is, it is synchronous).

If you have changed the analog output configuration from the defaults by changing the jumpers on the device, you must call AO\_Configure to set the software copies of the settings prior to calling WFM\_Op.

NI-DAQ ignores the group settings made by calling WFM\_Group\_Setup when you call WFM\_Op and the settings are not changed after NI-DAQ executes you execute WFM\_Op.

For Lab and 1200 Series analog output devices, if the **rate** is smaller than 15.26 pts/s and counter B0 is busy in a data acquisition or counting operation, waveform generation cannot proceed.

WFM\_OP uses either the default gating mode (none) or the gating mode you specify through the CTR\_Config function. You need to connect your trigger signal to the gate pin on the I/O connector. Refer to the CTR\_Config function description for details.

On E Series and 671*X* devices, you can externally trigger a waveform generation operation in a variety of ways. Refer to the Select\_Signal function for more details.

The DSA devices use 32-bit data buffers. If you are using C or Delphi, you need to typecast your i32 array to i16 when you call WFM\_Op. If you are using Visual Basic, you should use the nidaqr32.bas file (instead of nidaq32.bas) to relax type checking on **buffer**. The DSA devices use the upper 18 bits of each buffer element. The lower 14 bits are ignored and you should set them to 0. You can move each data point into the upper 18 bits with a left shift operation by multiplying it by 16,384.

# **WFM Rate**

#### **Format**

status = WFM\_Rate (rate, units, timebase, updateInterval)

# **Purpose**

Converts a waveform generation update rate into the timebase and update-interval values needed to produce the rate you want.

#### **Parameters**

### Input

| Name  | Туре | Description          |  |
|-------|------|----------------------|--|
| rate  | f64  | update rate you want |  |
| units | i16  | units used           |  |

# Output

| Name           | Туре | Description                     |
|----------------|------|---------------------------------|
| timebase       | *i16 | resolution of clock signal      |
| updateInterval | *u32 | number of <b>timebase</b> units |

#### **Parameter Discussion**

**rate** is the waveform generation update rate you want. **rate** is expressed in either pts/s or seconds per point (s/pt), depending on the value of the **units** parameter.

Range: Roughly 0.00153 pts/s through 500,000 pts/s or 655 s/pt through 0.000002 s/pt.

units indicates the units used to express rate.

- 0: points per second.
- 1: seconds per point.

**timebase** is a code representing the resolution of the onboard clock signal that the device uses to produce the update rate you want. You can input the value returned in **timebase** directly to WFM\_ClockRate. **timebase** has the following possible values:

- -3: 20 MHz clock used as a timebase (50 ms) (E Series and 671X devices only).
- −1: 5 MHz clock used as timebase (200 ns resolution).
  - 1: 1 MHz clock used as timebase (1 µs resolution).
  - 2: 100 kHz clock used as timebase (10 µs resolution).
  - 3: 10 kHz clock used as timebase (100 µs resolution).

- 4: 1 kHz clock used as timebase (1 ms resolution).
- 5: 100 Hz clock used as timebase (10 ms resolution).

**updateInterval** is the number of **timebase** units that elapse between consecutive writes (updates) to the D/A converters. The combination of the **timebase** resolution value and the **updateInterval** produces the waveform generation rate you want. You can input the value returned in **updateInterval** directly to WFM\_ClockRate.

Range: 2 through 65,535.



**Note** If you are using an SCXI-1200 with remote SCXI, the maximum rate depends on the baud rate setting and updateRate. Refer to the *SCXI-1200 User Manual* for more details.



**Note** C Programmers—**timebase** and **updateInterval** are pass-by-address parameters.

# **Using This Function**

WFM\_Rate produces **timebase** and **updateInterval** values to closely match the update rate you want. To calculate the actual rate produced by these values, first determine the clock resolution that corresponds to the value **timebase** returns. Then use the appropriate formula below, depending on the value specified for **units**:

```
units = 0 (pts/s).
    actual rate = 1/(clock resolution * updateInterval).
units = 1 (s/pt).
    actual rate = clock resolution * updateInterval.
```

### **Format**

status = WFM\_Scale (deviceNumber, chan, count, gain, voltArray, binArray)

# **Purpose**

Translates an array of floating-point values that represent voltages into an array of binary values that produce those voltages when NI-DAQ writes the binary array to one of the board DACs. This function uses the current analog output configuration settings to perform the conversions.

Chapter 2

### **Parameters**

# Input

| Name         | Туре  | Description                                        |  |
|--------------|-------|----------------------------------------------------|--|
| deviceNumber | i16   | assigned by configuration utility                  |  |
| chan         | i16   | analog output channel                              |  |
| count        | u32   | number of points in the buffer                     |  |
| gain         | f64   | multiplier applied as the translation is performed |  |
| voltArray    | [f64] | input double-precision values                      |  |

# Output

| Name     | Туре  | Description                               |
|----------|-------|-------------------------------------------|
| binArray | [i16] | binary values converted from the voltages |

### **Parameter Discussion**

**chan** indicates to which analog output channel the binary array is to be assigned.

Range: 0 or 1 for most devices.

0 through 5 for AT-AO-6. 0 through 9 for AT-AO-10. 0 through 3 for PCI-6711. 0 through 7 for PCI-6713.

**count** is the number of points in your buffer.

Range: 1 through  $2^{32} - 1$ .

gain is a multiplier applied to the array as NI-DAQ performs the translation. If the result of multiplying each element in the array by the value of gain produces a voltage that is out of range, NI-DAQ sets the voltage to the maximum or minimum value and returns an error. NI-DAQ still completes the translation, however.

Range: Any real number that produces a voltage within the analog output range.

**voltArray** is the input array of double-precision values that represents the voltages NI-DAQ is to produce at one of the outputs.

Range: Any real number that produces a voltage within the analog output range.

**binArray** is the array of binary values converted from the voltages contained in **voltArray**. The values in **binArray** produce the original voltages when NI-DAQ writes them to a DAC on your device. Refer to Appendix B, *Analog Input Channel, Gain Settings, and Voltage Calculation*, for the calculation of binary value.

# **Using This Function**

WFM\_Scale calculates each binary value using the following formulas:

• Unipolar configuration:

```
12-bit DACs: binVal = voltage * (gain * (4096/outputRange)).
16-bit DACs: binVal = voltage * (gain * (65536/outputRange)).
```

Bipolar configuration:

```
12-bit DACs: binVal = voltage * (gain * (2048/outputRange)).
16-bit DACs: binVal = voltage * (gain * (32768/outputRange)).
18-bit DACs: binVal = voltage * (gain * (131072/outputRange)).
```

The DSA devices use 32-bit data buffers. If you are using C or Delphi, you need to typecast your i32 array to i16 when you call WFM\_Scale. If you are using Visual Basic, you should use the nidaqr32.bas file (instead of nidaq32.bas) to relax type checking on **binArray**. Each 18-bit **binVal** is shifted into the upper 18 bits of the array element.

# WFM Set Clock

### **Format**

status = WFM\_Set\_Clock (deviceNumber, group, whichClock, desiredRate, units, actualRate)

# **Purpose**

Sets the update rate for a group of channels (DSA devices only).

### **Parameters**

### Input

| Name         | Туре | Description                          |  |
|--------------|------|--------------------------------------|--|
| deviceNumber | i16  | assigned by configuration utility    |  |
| group        | i16  | group of analog output channels      |  |
| whichClock   | u32  | only update clock supported          |  |
| desiredRate  | f64  | desired update rate in units         |  |
| units        | u32  | ticks per second or seconds per tick |  |

# **Output**

| Name       | Туре | Description                 |
|------------|------|-----------------------------|
| actualRate | *f64 | actual update rate in units |

# **Parameter Discussion**

 ${\bf group}$  is the group of analog output channels (see WFM\_Group\_Setup).

Range: 1.

**whichClock** indicates the type of clock. Only one clock is currently supported so set this parameter to zero.

**desiredRate** is the rate at which you want data points to be sent to the DACs.

units determines how desiredRate and actualRate are interpreted:

0: points per second.

1: seconds per point.

**actualRate** is the rate at which data points are sent to the DACs. The capabilities of your device determine how closely **actualRate** matches **desiredRate**. The DSA devices use the same base clock for both DAQ/SCAN and WFM operations so the rates available for WFM are restricted if a DAQ/SCAN operation is already in progress.



**Note** C Programmers—actualRate is a pass-by-address parameter.

# **Using This Function**

The frequency of a waveform is related to the update rate and the number of points in the buffer (indicated in an earlier call to WFM\_Load). Assuming that your buffer contains exactly one period of your waveform:

frequency = update rate/points in the buffer

You can make repeated calls to WFM\_Set\_Clock to change the update rate of a waveform in progress.



# **Error Codes**

This appendix lists the error codes returned by NI-DAQ, including the name and description.

Each NI-DAQ function returns a status code that indicates whether the function was performed successfully. When an NI-DAQ function returns a code that is a negative number, it means that the function did not execute. When a positive status code is returned, it means that the function did execute, but with a potentially serious side effect. A summary of the error codes is listed in Table A-1.



**Note** All error codes and descriptions are also listed in the NI-DAQ online help.

Table A-1. Error Code Summary

| Error<br>Code | Error Name         | Description                                                                                                                                                                            |
|---------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -10001        | syntaxError        | An error was detected in the input string; the arrangement or ordering of the characters in the string is not consistent with the expected ordering.                                   |
| -10002        | semanticsError     | An error was detected in the input string; the syntax of the string is correct, but certain values specified in the string are inconsistent with other values specified in the string. |
| -10003        | invalidValueError  | The value of a numeric parameter is invalid.                                                                                                                                           |
| -10004        | valueConflictError | The value of a numeric parameter is inconsistent with another one, and therefore the combination is invalid.                                                                           |
| -10005        | badDeviceError     | The device is invalid.                                                                                                                                                                 |
| -10006        | badLineError       | The line is invalid.                                                                                                                                                                   |

Table A-1. Error Code Summary (Continued)

| Error<br>Code | Error Name           | Description                                                                                                                                                                                          |
|---------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -10007        | badChanError         | A channel, port, or counter is out of range for the device type or device configuration; or the combination of channels is not allowed; or the scan order must be reversed (0 last).                 |
| -10008        | badGroupError        | The group is invalid.                                                                                                                                                                                |
| -10009        | badCounterError      | The counter is invalid.                                                                                                                                                                              |
| -10010        | badCountError        | The count is too small or too large for the specified counter, or the given I/O transfer count is not appropriate for the current buffer or channel configuration.                                   |
| -10011        | badIntervalError     | The analog input scan rate is too fast for<br>the number of channels and the channel<br>clock rate; or the given clock rate is not<br>supported by the associated counter<br>channel or I/O channel. |
| -10012        | badRangeError        | The analog input or analog output voltage range is invalid for the specified channel, or you are writing an invalid voltage to the analog output.                                                    |
| -10013        | badErrorCodeError    | The driver returned an unrecognized or unlisted error code.                                                                                                                                          |
| -10014        | groupTooLargeError   | The group size is too large for the board.                                                                                                                                                           |
| -10015        | badTimeLimitError    | The time limit is invalid.                                                                                                                                                                           |
| -10016        | badReadCountError    | The read count is invalid.                                                                                                                                                                           |
| -10017        | badReadModeError     | The read mode is invalid.                                                                                                                                                                            |
| -10018        | badReadOffsetError   | The offset is unreachable.                                                                                                                                                                           |
| -10019        | badClkFrequencyError | The frequency is invalid.                                                                                                                                                                            |
| -10020        | badTimebaseError     | The timebase is invalid.                                                                                                                                                                             |
| -10021        | badLimitsError       | The limits are beyond the range of the board.                                                                                                                                                        |

Table A-1. Error Code Summary (Continued)

| Error<br>Code | Error Name                  | Description                                                                                                                                                                                                                                                                                                    |
|---------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -10022        | badWriteCountError          | Your data array contains an incomplete update, or you are trying to write past the end of the internal buffer, or your output operation is continuous and the length of your array is not a multiple of one half of the internal buffer size.                                                                  |
| -10023        | badWriteModeError           | The write mode is out of range or is not allowed.                                                                                                                                                                                                                                                              |
| -10024        | badWriteOffsetError         | Adding the write offset to the write mark places the write mark outside the internal buffer.                                                                                                                                                                                                                   |
| -10025        | limitsOutOfRangeError       | The requested input limits exceed the board's capability or configuration. Alternative limits were selected.                                                                                                                                                                                                   |
| -10026        | badBufferSpecificationError | The requested number of buffers or the buffer size is not allowed. For example, the buffer limit for Lab and 1200 devices is 64K samples, or the board does not support multiple buffers.                                                                                                                      |
| -10027        | badDAQEventError            | For <b>DAQEvents</b> 0 and 1 general value A must be greater than 0 and less than the internal buffer size. If DMA is used for <b>DAQEvent</b> 1, general value A must divide the internal buffer size evenly, with no remainder. If the TIO-10 is used for <b>DAQEvent</b> 4, general value A must be 1 or 2. |
| -10028        | badFilterCutoffError        | The cutoff frequency specified is not valid for this device.                                                                                                                                                                                                                                                   |
| -10029        | obsoleteFunctionError       | The function you are calling is no longer supported in this version of the driver.                                                                                                                                                                                                                             |
| -10030        | badBaudRateError            | The specified baud rate for communicating with the serial port is not valid on this platform.                                                                                                                                                                                                                  |

Table A-1. Error Code Summary (Continued)

| Error  |                               |                                                                                                                                                                                          |
|--------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Code   | Error Name                    | Description                                                                                                                                                                              |
| -10031 | badChassisIDError             | The specified SCXI chassis does not correspond to a configured SCXI chassis.                                                                                                             |
| -10032 | badModuleSlotError            | The SCXI module slot that was specified is invalid or corresponds to an empty slot.                                                                                                      |
| -10033 | invalidWinHandleError         | The window handle passed to the function is invalid.                                                                                                                                     |
| -10034 | noSuchMessageError            | No configured message matches the one you tried to delete.                                                                                                                               |
| -10035 | irrelevantAttributeError      | The specified attribute is not relevant.                                                                                                                                                 |
| -10036 | badYearError                  | The specified year is invalid.                                                                                                                                                           |
| -10037 | badMonthError                 | The specified month is invalid.                                                                                                                                                          |
| -10038 | badDayError                   | The specified day is invalid.                                                                                                                                                            |
| -10039 | stringTooLongError            | The specified input string is too long. For instance, DAQScope 5102 devices can only store a string upto 32 bytes in length on the calibration EEPROM. In that case, shorten the string. |
| -10040 | badGroupSizeError             | The group size is invalid.                                                                                                                                                               |
| -10041 | badTaskIDError                | The specified task ID is invalid. For instance, you may have connected a taskID from an Analog Input VI to a Digital I/O VI.                                                             |
| -10042 | inappropriateControlCodeError | The specified control code is inappropriate for the current configuration or state.                                                                                                      |
| -10043 | badDivisorError               | The specified divisor is invalid.                                                                                                                                                        |
| -10044 | badPolarityError              | The specified polarity is invalid.                                                                                                                                                       |
| -10045 | badInputModeError             | The specified input mode is invalid.                                                                                                                                                     |
| -10079 | badTrigSkipCountError         | The trigger skip count is invalid.                                                                                                                                                       |
| -10080 | badGainError                  | The gain or gain adjust is invalid.                                                                                                                                                      |

Table A-1. Error Code Summary (Continued)

| Error<br>Code | Error Name            | Description                                                                                                                                                                                                                          |
|---------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -10081        | badPretrigCountError  | The pretrigger sample count is invalid.                                                                                                                                                                                              |
| -10082        | badPosttrigCountError | The posttrigger sample count is invalid.                                                                                                                                                                                             |
| -10083        | badTrigModeError      | The trigger mode is invalid.                                                                                                                                                                                                         |
| -10084        | badTrigCountError     | The trigger count is invalid.                                                                                                                                                                                                        |
| -10085        | badTrigRangeError     | The trigger range or trigger hysteresis window is invalid.                                                                                                                                                                           |
| -10086        | badExtRefError        | The external reference is invalid.                                                                                                                                                                                                   |
| -10087        | badTrigTypeError      | The trigger type is invalid.                                                                                                                                                                                                         |
| -10088        | badTrigLevelError     | The trigger level is invalid.                                                                                                                                                                                                        |
| -10089        | badTotalCountError    | The total count is inconsistent with the buffer size and pretrigger scan count or with the board type.                                                                                                                               |
| -10090        | badRPGError           | The individual range, polarity, and gain settings are valid but the combination is not allowed.                                                                                                                                      |
| -10091        | badIterationsError    | You have attempted to use an invalid setting for the iterations parameter. The iterations value must be 0 or greater. Your device might be limited to only two values, 0 and 1.                                                      |
| -10092        | lowScanIntervalError  | Some devices require a time gap between the last sample in a scan and the start of the next scan. The scan interval you have specified does not provide a large enough gap for the board. See your documentation for an explanation. |
| -10093        | fifoModeError         | FIFO mode waveform generation cannot be used because at least one condition is not satisfied.                                                                                                                                        |
| -10094        | badCalDACconstError   | The calDAC constant passed to the function is invalid.                                                                                                                                                                               |

Table A-1. Error Code Summary (Continued)

| Error<br>Code | Error Name                  | Description                                                                                                                                                                |
|---------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -10095        | badCalStimulusError         | The calibration stimulus passed to the function is invalid.                                                                                                                |
| -10096        | badCalibrationConstantError | The specified calibration constant is invalid.                                                                                                                             |
| -10097        | badCalOpError               | The specified calibration operation is invalid.                                                                                                                            |
| -10098        | badCalConstAreaError        | The specified calibration constant area is invalid. For instance, the specified calibration constant area contains constants which cannot be modified outside the factory. |
| -10100        | badPortWidthError           | The requested digital port width is not a multiple of the hardware port width or is not attainable by the DAQ hardware.                                                    |
| -10120        | gpctrBadApplicationError    | Invalid application used.                                                                                                                                                  |
| -10121        | gpctrBadCtrNumberError      | Invalid counterNumber used.                                                                                                                                                |
| -10122        | gpctrBadParamValueError     | Invalid <b>paramValue</b> used.                                                                                                                                            |
| -10123        | gpctrBadParamIDError        | Invalid <b>paramID</b> used.                                                                                                                                               |
| -10124        | gpctrBadEntityIDError       | Invalid entityID used.                                                                                                                                                     |
| -10125        | gpctrBadActionError         | Invalid action used.                                                                                                                                                       |
| -10126        | gpctrSourceSelectError      | Invalid source selected.                                                                                                                                                   |
| -10127        | badCountDirError            | The specified counter does not support the specified count direction.                                                                                                      |
| -10128        | badGateOptionError          | The specified gating option is invalid.                                                                                                                                    |
| -10129        | badGateModeError            | The specified gate mode is invalid.                                                                                                                                        |
| -10130        | badGateSourceError          | The specified gate source is invalid.                                                                                                                                      |
| -10131        | badGateSignalError          | The specified gate signal is invalid.                                                                                                                                      |
| -10132        | badSourceEdgeError          | The specified source edge is invalid.                                                                                                                                      |
| -10133        | badOutputTypeError          | The specified output type is invalid.                                                                                                                                      |

Table A-1. Error Code Summary (Continued)

| Error<br>Code | Error Name                 | Description                                                                                                                                                                                                                                         |
|---------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -10134        | badOutputPolarityError     | The specified output polarity is invalid.                                                                                                                                                                                                           |
| -10135        | badPulseModeError          | The specified pulse mode is invalid.                                                                                                                                                                                                                |
| -10136        | badDutyCycleError          | The specified duty cycle is invalid.                                                                                                                                                                                                                |
| -10137        | badPulsePeriodError        | The specified pulse period is invalid.                                                                                                                                                                                                              |
| -10138        | badPulseDelayError         | The specified pulse delay is invalid.                                                                                                                                                                                                               |
| -10139        | badPulseWidthError         | The specified pulse width is invalid.                                                                                                                                                                                                               |
| -10140        | badFOUTportError           | The specified frequency output (FOUT or FREQ_OUT) port is invalid.                                                                                                                                                                                  |
| -10141        | badAutoIncrementModeError  | The specified autoincrement mode is invalid.                                                                                                                                                                                                        |
| -10180        | badNotchFilterError        | The specified notch filter is invalid.                                                                                                                                                                                                              |
| -10181        | badMeasModeError           | The specified measurement mode is invalid.                                                                                                                                                                                                          |
| -10200        | EEPROMreadError            | Unable to read data from EEPROM.                                                                                                                                                                                                                    |
| -10201        | EEPROMwriteError           | Unable to write data to EEPROM.                                                                                                                                                                                                                     |
| -10202        | EEPROMwriteProtectionError | You cannot write into this location or area of your EEPROM because it is write-protected. You may be trying to store calibration constants into a write-protected area; if this is the case, you should select the user area of the EEPROM instead. |
| -10203        | EEPROMinvalidLocationError | The specified EEPROM location is invalid.                                                                                                                                                                                                           |
| -10204        | EEPROMinvalidPasswordError | The password for accessing the EEPROM is incorrect.                                                                                                                                                                                                 |
| -10240        | noDriverError              | The driver interface could not locate or open the driver.                                                                                                                                                                                           |

Table A-1. Error Code Summary (Continued)

| Error  |                       |                                                                                                                                                                                                            |
|--------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Code   | Error Name            | Description                                                                                                                                                                                                |
| -10241 | oldDriverError        | One of the driver files or the configuration utility is out of date, or a particular feature of the Channel Wizard is not supported in this version of the driver.                                         |
| -10242 | functionNotFoundError | The specified function is not located in the driver.                                                                                                                                                       |
| -10243 | configFileError       | The driver could not locate or open the configuration file, or the format of the configuration file is not compatible with the currently installed driver.                                                 |
| -10244 | deviceInitError       | The driver encountered a hardware-initialization error while attempting to configure the specified device.                                                                                                 |
| -10245 | osInitError           | The driver encountered an operating-system error while attempting to perform an operation, or the operating system does not support an operation performed by the driver.                                  |
| -10246 | communicationsError   | The driver is unable to communicate with the specified external device.                                                                                                                                    |
| -10247 | cmosConfigError       | The CMOS configuration-memory for the device is empty or invalid, or the configuration specified does not agree with the current configuration of the device, or the EISA system configuration is invalid. |
| -10248 | dupAddressError       | The base addresses for two or more devices are the same; consequently, the driver is unable to access the specified device.                                                                                |
| -10249 | intConfigError        | The interrupt configuration is incorrect given the capabilities of the computer or device.                                                                                                                 |

Table A-1. Error Code Summary (Continued)

| Error<br>Code | Error Name                   | Description                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -10250        | dupIntError                  | The interrupt levels for two or more devices are the same.                                                                                                                                                                                                                                                                                                                                     |
| -10251        | dmaConfigError               | The DMA configuration is incorrect given the capabilities of the computer/DMA controller or device.                                                                                                                                                                                                                                                                                            |
| -10252        | dupDMAError                  | The DMA channels for two or more devices are the same.                                                                                                                                                                                                                                                                                                                                         |
| -10253        | jumperlessBoardError         | Unable to find one or more jumperless boards you have configured using Measurement & Automation Explorer.                                                                                                                                                                                                                                                                                      |
| -10254        | DAQCardConfError             | Cannot configure the DAQCard because 1) the correct version of the card and socket services software is not installed; 2) the card in the PCMCIA socket is not a DAQCard; or 3) the base address and/or interrupt level requested are not available according to the card and socket services resource manager. Try different settings or use AutoAssign in Measurement & Automation Explorer. |
| -10255        | remoteChassisDriverInitError | There was an error in initializing the driver for Remote SCXI.                                                                                                                                                                                                                                                                                                                                 |
| -10256        | comPortOpenError             | There was an error in opening the specified COM port.                                                                                                                                                                                                                                                                                                                                          |
| -10257        | baseAddressError             | Bad base address specified in the configuration utility.                                                                                                                                                                                                                                                                                                                                       |
| -10258        | dmaChannel1Error             | Bad DMA channel 1 specified in the configuration utility or by the operating system.                                                                                                                                                                                                                                                                                                           |
| -10259        | dmaChannel2Error             | Bad DMA channel 2 specified in the configuration utility or by the operating system.                                                                                                                                                                                                                                                                                                           |

Table A-1. Error Code Summary (Continued)

| Error  |                                     |                                                                                                                                                                                              |
|--------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Code   | Error Name                          | Description                                                                                                                                                                                  |
| -10260 | dmaChannel3Error                    | Bad DMA channel 3 specified in the configuration utility or by the operating system.                                                                                                         |
| -10261 | user Mode To Kernel Mode Call Error | The user mode code failed when calling the kernel mode code.                                                                                                                                 |
| -10340 | noConnectError                      | No RTSI or PFI signal/line is connected, or the specified signal and the specified line are not connected, or your connection to an RDA server either cannot be made or has been terminated. |
| -10341 | badConnectError                     | The RTSI or PFI signal/line cannot be connected as specified.                                                                                                                                |
| -10342 | multConnectError                    | The specified RTSI signal is already being driven by a RTSI line, or the specified RTSI line is already being driven by a RTSI signal.                                                       |
| -10343 | SCXIConfigError                     | The specified SCXI configuration parameters are invalid, or the function cannot be executed with the current SCXI configuration.                                                             |
| -10344 | chassisSynchedError                 | The Remote SCXI unit is not synchronized with the host. Reset the chassis again to resynchronize it with the host.                                                                           |
| -10345 | chassisMemAllocError                | The required amount of memory cannot be allocated on the Remote SCXI unit for the specified operation.                                                                                       |
| -10346 | badPacketError                      | The packet received by the Remote SCXI unit is invalid. Check your serial port cable connections.                                                                                            |
| -10347 | chassisCommunicationError           | There was an error in sending a packet to the remote chassis. Check your serial port cable connections.                                                                                      |

Table A-1. Error Code Summary (Continued)

| Error  |                                 |                                                                                                                                                                                                                                                                                                                                                                                         |
|--------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Code   | Error Name                      | Description                                                                                                                                                                                                                                                                                                                                                                             |
| -10348 | waitingForReprogError           | The Remote SCXI unit is in reprogramming mode and is waiting for reprogramming commands from the host (Measurement & Automation Explorer).                                                                                                                                                                                                                                              |
| -10349 | SCXIModuleTypeConflictError     | The module ID read from the SCXI module conflicts with the configured module type.                                                                                                                                                                                                                                                                                                      |
| -10350 | CannotDetermineEntryModuleError | Neither an SCXI entry module (the SCXI module cabled to the measurement device that performs the acquisition/control operation) has been specified by the user, nor can NI-DAQ uniquely determine the entry module for the current SCXI configuration.                                                                                                                                  |
| -10360 | DSPInitError                    | The DSP driver was unable to load the kernel for its operating system.                                                                                                                                                                                                                                                                                                                  |
| -10370 | badScanListError                | The scan list is invalid; for example, you are mixing AMUX-64T channels and onboard channels, scanning SCXI channels out of order, or have specified a different starting channel for the same SCXI module. Also, the driver attempts to achieve complicated gain distributions over SCXI channels on the same module by manipulating the scan list and returns this error if it fails. |
| -10380 | invalidSignalSrcError           | The specified signal source is invalid for the selected signal name.                                                                                                                                                                                                                                                                                                                    |
| -10381 | invalidSignalNameError          | The specified signal name is invalid.                                                                                                                                                                                                                                                                                                                                                   |
| -10382 | invalidSrcSpecError             | The specified source specification is invalid for the signal source or signal name.                                                                                                                                                                                                                                                                                                     |
| -10383 | invalidSignalDestError          | The specified signal destination is invalid.                                                                                                                                                                                                                                                                                                                                            |

Table A-1. Error Code Summary (Continued)

| Error<br>Code | Error Name          | Description                                                                                                                                                                                                                                               |
|---------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -10400        | userOwnedRsrcError  | The specified resource is owned by the user and cannot be accessed or modified by the driver.                                                                                                                                                             |
| -10401        | unknownDeviceError  | The specified device is not a National Instruments product, the driver does not support the device (for example, the driver was released before the device was supported), or the device has not been configured using Measurement & Automation Explorer. |
| -10402        | deviceNotFoundError | No device is located in the specified slot or at the specified address.                                                                                                                                                                                   |
| -10403        | deviceSupportError  | The specified device does not support the requested action (the driver recognizes the device, but the action is inappropriate for the device).                                                                                                            |
| -10404        | noLineAvailError    | No line is available.                                                                                                                                                                                                                                     |
| -10405        | noChanAvailError    | No channel is available.                                                                                                                                                                                                                                  |
| -10406        | noGroupAvailError   | No group is available.                                                                                                                                                                                                                                    |
| -10407        | lineBusyError       | The specified line is in use.                                                                                                                                                                                                                             |
| -10408        | chanBusyError       | The specified channel is in use.                                                                                                                                                                                                                          |
| -10409        | groupBusyError      | The specified group is in use.                                                                                                                                                                                                                            |
| -10410        | relatedLCGBusyError | A related line, channel, or group is in use; if the driver configures the specified line, channel, or group, the configuration, data, or handshaking lines for the related line, channel, or group will be disturbed.                                     |
| -10411        | counterBusyError    | The specified counter is in use.                                                                                                                                                                                                                          |
| -10412        | noGroupAssignError  | No group is assigned, or the specified line or channel cannot be assigned to a group.                                                                                                                                                                     |

Table A-1. Error Code Summary (Continued)

| _             |                         |                                                                                                                                                                                                                                                                                                              |
|---------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Error<br>Code | Error Name              | Description                                                                                                                                                                                                                                                                                                  |
| -10413        | groupAssignError        | A group is already assigned, or the specified line or channel is already assigned to a group.                                                                                                                                                                                                                |
| -10414        | reservedPinError        | The selected signal requires a pin that is reserved and configured only by NI-DAQ. You cannot configure this pin yourself.                                                                                                                                                                                   |
| -10415        | externalMuxSupportError | This function does not support your DAQ device when an external multiplexer (such as an AMUX-64T or SCXI) is connected to it.                                                                                                                                                                                |
| -10440        | sysOwnedRsrcError       | The specified resource is owned by the driver and cannot be accessed or modified by the user.                                                                                                                                                                                                                |
| -10441        | memConfigError          | No memory is configured to support the current data-transfer mode, or the configured memory does not support the current data-transfer mode. (If block transfers are in use, the memory must be capable of performing block transfers.)                                                                      |
| -10442        | memDisabledError        | The specified memory is disabled or is unavailable given the current addressing mode.                                                                                                                                                                                                                        |
| -10443        | memAlignmentError       | The transfer buffer is not aligned properly for the current data-transfer mode. For example, the buffer is at an odd address, is not aligned to a 32-bit boundary, is not aligned to a 512-bit boundary, and so on. Alternatively, the driver is unable to align the buffer because the buffer is too small. |
| -10444        | memFullError            | No more system memory is available on<br>the heap, or no more memory is available<br>on the device, or insufficient disk space is<br>available.                                                                                                                                                              |

Table A-1. Error Code Summary (Continued)

| Error<br>Code | Error Name       | Description                                                                                                                                                                          |
|---------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -10445        | memLockError     | The transfer buffer cannot be locked into physical memory. On PC AT machines, portions of the DMA data acquisition buffer may be in an invalid DMA region, for example, above 16 MB. |
| -10446        | memPageError     | The transfer buffer contains a page break; system resources may require reprogramming when the page break is encountered.                                                            |
| -10447        | memPageLockError | The operating environment is unable to grant a page lock.                                                                                                                            |
| -10448        | stackMemError    | The driver is unable to continue parsing a string input due to stack limitations.                                                                                                    |
| -10449        | cacheMemError    | A cache-related error occurred, or caching is not supported in the current mode.                                                                                                     |
| -10450        | physicalMemError | A hardware error occurred in physical memory, or no memory is located at the specified address.                                                                                      |
| -10451        | virtualMemError  | The driver is unable to make the transfer buffer contiguous in virtual memory and therefore cannot lock it into physical memory; thus, the buffer cannot be used for DMA transfers.  |
| -10452        | noIntAvailError  | No interrupt level is available for use.                                                                                                                                             |
| -10453        | intInUseError    | The specified interrupt level is already in use by another device.                                                                                                                   |
| -10454        | noDMACError      | No DMA controller is available in the system.                                                                                                                                        |
| -10455        | noDMAAvailError  | No DMA channel is available for use.                                                                                                                                                 |
| -10456        | DMAInUseError    | The specified DMA channel is already in use by another device.                                                                                                                       |

Table A-1. Error Code Summary (Continued)

| Error<br>Code | Error Name                     | Description                                                                                                                                                                                                                                                    |
|---------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -10457        | badDMAGroupError               | DMA cannot be configured for the specified group because it is too small, too large, or misaligned. Consult the device user manual to determine group ramifications with respect to DMA.                                                                       |
| -10458        | diskFullError                  | The storage disk you specified is full.                                                                                                                                                                                                                        |
| -10459        | DLLInterfaceError              | The NI-DAQ DLL could not be called due to an interface error.                                                                                                                                                                                                  |
| -10460        | interfaceInteractionError      | You have mixed VIs from the DAQ library and the _DAQ compatibility library (LabVIEW 2.2 style VIs). You may switch between the two libraries only by running the DAQ VI Device Reset before calling _DAQ compatibility VIs or by running the compatibility VI. |
| -10461        | resourceReservedError          | The specified resource is unavailable because it has already been reserved by another entity.                                                                                                                                                                  |
| -10462        | resourceNotReservedError       | The specified resource has not been reserved, so the action is not allowed.                                                                                                                                                                                    |
| -10463        | mdResourceAlreadyReservedError | Another entity has already reserved the requested resource.                                                                                                                                                                                                    |
| -10464        | mdResourceReservedError        | Attempted to access a reserved resource that requires the usage of a key.                                                                                                                                                                                      |
| -10465        | mdResourceNotReservedError     | Attempting to lift a reservation off a resource that previously had no reservation.                                                                                                                                                                            |
| -10466        | mdResourceAccessKeyError       | The requested operation cannot be performed because the key supplied is invalid.                                                                                                                                                                               |
| -10467        | mdResourceNotReservedError     | The resource requested is not registered with the minidriver.                                                                                                                                                                                                  |

Table A-1. Error Code Summary (Continued)

| Error  |                                 |                                                                                                                                                                                                      |
|--------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Code   | Error Name                      | Description                                                                                                                                                                                          |
| -10480 | muxMemFullError                 | The scan list is too large to fit into the mux-gain memory of the board.                                                                                                                             |
| -10481 | bufferNotInterleavedError       | You must provide a single buffer of interleaved data, and the channels must be in ascending order. You cannot use DMA to transfer data from two buffers; however, you may be able to use interrupts. |
| -10540 | SCXIModuleNotSupportedError     | At least one of the SCXI modules specified is not supported for the operation.                                                                                                                       |
| -10541 | TRIG1ResourceConflict           | CTRB1 will drive COUTB1, however CTRB1 will also drive TRIG1. This may cause unpredictable results when scanning the chassis.                                                                        |
| -10542 | matrixTerminalBlockError        | This function requires that no Matrix terminal block is configured with the SCXI module.                                                                                                             |
| -10543 | noMatrixTerminalBlockError      | This function requires that some matrix terminal block is configured with the SCXI module.                                                                                                           |
| -10544 | invalidMatrixTerminalBlockError | The type of matrix terminal block configured will not allow proper operation of this function with the given parameters.                                                                             |
| -10560 | invalidDSPHandleError           | The DSP handle input is not valid.                                                                                                                                                                   |
| -10561 | DSPDataPathBusyError            | Either DAQ or WFM can use a PC memory buffer, but not both at the same time.                                                                                                                         |
| -10600 | noSetupError                    | No setup operation has been performed for the specified resources. Or, some resources require a specific ordering of calls for proper setup.                                                         |
| -10601 | multSetupError                  | The specified resources have already been configured by a setup operation.                                                                                                                           |

Table A-1. Error Code Summary (Continued)

| Error<br>Code | Error Name             | Description                                                                                                                                                                                                                                                           |
|---------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -10602        | noWriteError           | No output data has been written into the transfer buffer.                                                                                                                                                                                                             |
| -10603        | groupWriteError        | The output data associated with a group must be for a single channel or must be for consecutive channels.                                                                                                                                                             |
| -10604        | activeWriteError       | Once data generation has started, only the transfer buffers originally written to may be updated. If DMA is active and a single transfer buffer contains interleaved channel-data, new data must be provided for all output channels currently using the DMA channel. |
| -10605        | endWriteError          | No data was written to the transfer buffer because the final data block has already been loaded.                                                                                                                                                                      |
| -10606        | notArmedError          | The specified resource is not armed.                                                                                                                                                                                                                                  |
| -10607        | armedError             | The specified resource is already armed.                                                                                                                                                                                                                              |
| -10608        | noTransferInProgError  | No transfer is in progress for the specified resource.                                                                                                                                                                                                                |
| -10609        | transferInProgError    | A transfer is already in progress for the specified resource, or the operation is not allowed because the device is in the process of performing transfers, possibly with different resources.                                                                        |
| -10610        | transferPauseError     | A single output channel in a group may not be paused if the output data for the group is interleaved.                                                                                                                                                                 |
| -10611        | badDirOnSomeLinesError | Some of the lines in the specified channel are not configured for the transfer direction specified. For a write transfer, some lines are configured for input. For a read transfer, some lines are configured for output.                                             |

Table A-1. Error Code Summary (Continued)

| Error<br>Code | Error Name       | Description                                                                                                                       |
|---------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| -10612        | badLineDirError  | The specified line does not support the specified transfer direction.                                                             |
| -10613        | badChanDirError  | The specified channel does not support the specified transfer direction.                                                          |
| -10614        | badGroupDirError | The specified group does not support the specified transfer direction.                                                            |
| -10615        | masterClkError   | The clock configuration for the clock master is invalid.                                                                          |
| -10616        | slaveClkError    | The clock configuration for the clock slave is invalid.                                                                           |
| -10617        | noClkSrcError    | No source signal has been assigned to the clock resource.                                                                         |
| -10618        | badClkSrcError   | The specified source signal cannot be assigned to the clock resource.                                                             |
| -10619        | multClkSrcError  | A source signal has already been assigned to the clock resource.                                                                  |
| -10620        | noTrigError      | No trigger signal has been assigned to the trigger resource.                                                                      |
| -10621        | badTrigError     | The specified trigger signal cannot be assigned to the trigger resource.                                                          |
| -10622        | preTrigError     | The pretrigger mode is not supported or is not available in the current configuration, or no pretrigger source has been assigned. |
| -10623        | postTrigError    | No posttrigger source has been assigned.                                                                                          |
| -10624        | delayTrigError   | The delayed trigger mode is not supported or is not available in the current configuration, or no delay source has been assigned. |
| -10625        | masterTrigError  | The trigger configuration for the trigger master is invalid.                                                                      |

Table A-1. Error Code Summary (Continued)

| Error<br>Code | Error Name                    | Description                                                                                                                                                                                                                          |
|---------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -10626        | slaveTrigError                | The trigger configuration for the trigger slave is invalid.                                                                                                                                                                          |
| -10627        | noTrigDrvError                | No signal has been assigned to the trigger resource.                                                                                                                                                                                 |
| -10628        | multTrigDrvError              | A signal has already been assigned to the trigger resource.                                                                                                                                                                          |
| -10629        | invalidOpModeError            | The specified operating mode is invalid, or the resources have not been configured for the specified operating mode.                                                                                                                 |
| -10630        | invalidReadError              | The parameters specified to read data were invalid in the context of the acquisition. For example, an attempt was made to read 0 bytes from the transfer buffer, or an attempt was made to read past the end of the transfer buffer. |
| -10631        | noInfiniteModeError           | Continuous input or output transfers are not allowed in the current operating mode, or continuous operation is not allowed for this type of device.                                                                                  |
| -10632        | someInputsIgnoredError        | Certain inputs were ignored because they are not relevant in the current operating mode.                                                                                                                                             |
| -10633        | invalidRegenModeError         | The specified analog output regeneration mode is not allowed for this board.                                                                                                                                                         |
| -10634        | noContTransferInProgressError | No continuous (double-buffered) transfer is in progress for the specified resource.                                                                                                                                                  |
| -10635        | invalidSCXIOpModeError        | Either the SCXI operating mode specified in a configuration call is invalid, or a module is in the wrong operating mode to execute the function call.                                                                                |
| -10636        | noContWithSynchError          | You cannot start a continuous (double-buffered) operation with a synchronous function call.                                                                                                                                          |

Table A-1. Error Code Summary (Continued)

| Error<br>Code | Error Name                     | Description                                                                                                               |
|---------------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| -10637        | bufferAlreadyConfigError       | Attempted to configure a buffer after the buffer had already been configured. You can configure a buffer only once.       |
| -10638        | badClkDestError                | The clock cannot be assigned to the specified destination.                                                                |
| -10670        | rangeBadForMeasModeError       | The input range is invalid for the configured measurement mode.                                                           |
| -10671        | autozeroModeConflictError      | Autozero cannot be enabled for the configured measurement mode.                                                           |
| -10680        | badChanGainError               | All channels of this board must have the same gain.                                                                       |
| -10681        | badChanRangeError              | All channels of this board must have the same range.                                                                      |
| -10682        | badChanPolarityError           | All channels of this board must be the same polarity.                                                                     |
| -10683        | badChanCouplingError           | All channels of this board must have the same coupling.                                                                   |
| -10684        | badChanInputModeError          | All channels of this board must have the same input mode.                                                                 |
| -10685        | clkExceedsBrdsMaxConvRateError | The clock rate exceeds the board's recommended maximum rate.                                                              |
| -10686        | scanListInvalidError           | A configuration change has invalidated the scan list.                                                                     |
| -10687        | bufferInvalidError             | A configuration change has invalidated the acquisition buffer, or an acquisition buffer has not been configured.          |
| -10688        | noTrigEnabledError             | The number of total scans and pretrigger scans implies that a triggered start is intended, but triggering is not enabled. |
| -10689        | digitalTrigBError              | Digital trigger B is illegal for the number of total scans and pretrigger scans specified.                                |

Table A-1. Error Code Summary (Continued)

| Error<br>Code | Error Name              | Description                                                                                                                                                                        |
|---------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -10690        | digitalTrigAandBError   | This board does not allow digital triggers A and B to be enabled at the same time.                                                                                                 |
| -10691        | extConvRestrictionError | This board does not allow an external sample clock with an external scan clock, start trigger, or stop trigger.                                                                    |
| -10692        | chanClockDisabledError  | The acquisition cannot be started because the channel clock is disabled.                                                                                                           |
| -10693        | extScanClockError       | You cannot use an external scan clock when doing a single scan of a single channel.                                                                                                |
| -10694        | unsafeSamplingFreqError | The scan rate is above the maximum or below the minimum for the hardware, gains, and filters used.                                                                                 |
| -10695        | DMAnotAllowedError      | You have set up an operation that requires the use of interrupts. DMA is not allowed. For example, some DAQ events, such as messaging and LabVIEW occurrences, require interrupts. |
| -10696        | multiRateModeError      | Multi-rate scanning cannot be used with the AMUX-64, SCXI, or pretriggered acquisitions.                                                                                           |
| -10697        | rateNotSupportedError   | Unable to convert your timebase/interval pair to match the actual hardware capabilities of this board.                                                                             |
| -10698        | timebaseConflictError   | You cannot use this combination of scan and sample clock timebases for this board.                                                                                                 |
| -10699        | polarityConflictError   | You cannot use this combination of scan and sample clock source polarities for this operation and board.                                                                           |
| -10700        | signalConflictError     | You cannot use this combination of scan and convert clock signal sources for this operation and board.                                                                             |

Table A-1. Error Code Summary (Continued)

| Error<br>Code | Error Name                    | Description                                                                                                                                                                               |
|---------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -10701        | noLaterUpdateError            | The call had no effect because the specified channel had not been set for later internal update.                                                                                          |
| -10702        | prePostTriggerError           | Pretriggering and posttriggering cannot be used simultaneously on the Lab and 1200 series devices.                                                                                        |
| -10710        | noHandshakeModeError          | The specified port has not been configured for handshaking.                                                                                                                               |
| -10720        | noEventCtrError               | The specified counter is not configured for event-counting operation.                                                                                                                     |
| -10740        | SCXITrackHoldError            | A signal has already been assigned to the SCXI track-and-hold trigger line, or a control call was inappropriate because the specified module is not configured for one-channel operation. |
| -10780        | sc2040InputModeError          | When you have an SC2040 attached to your device, all analog input channels must be configured for differential input mode.                                                                |
| -10781        | outputTypeMustBeVoltageError  | The polarity of the output channel cannot be bipolar when outputting currents.                                                                                                            |
| -10782        | sc2040HoldModeError           | The specified operation cannot be performed with the SC-2040 configured in hold mode.                                                                                                     |
| -10783        | calConstPolarityConflictError | Calibration constants in the load area have a different polarity from the current configuration. Therefore, you should load constants from factory.                                       |
| -10800        | timeOutError                  | The operation could not complete within the time limit.                                                                                                                                   |

Table A-1. Error Code Summary (Continued)

| Error<br>Code | Error Name            | Description                                                                                                                                                                                                                                                               |
|---------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -10801        | calibrationError      | An error occurred during the calibration process. Possible reasons for this error include incorrect connection of the stimulus signal, incorrect value of the stimulus signal, or malfunction of your DAQ device.                                                         |
| -10802        | dataNotAvailError     | The requested amount of data has not yet been acquired.                                                                                                                                                                                                                   |
| -10803        | transferStoppedError  | The on-going transfer has been stopped. This is to prevent regeneration for output operations, or to reallocate resources for input operations.                                                                                                                           |
| -10804        | earlyStopError        | The transfer stopped prior to reaching the end of the transfer buffer.                                                                                                                                                                                                    |
| -10805        | overRunError          | The clock rate is faster than the hardware can support. An attempt to input or output a new data point was made before the hardware could finish processing the previous data point. This condition may also occur when glitches are present on an external clock signal. |
| -10806        | noTrigFoundError      | No trigger value was found in the input transfer buffer.                                                                                                                                                                                                                  |
| -10807        | earlyTrigError        | The trigger occurred before sufficient pretrigger data was acquired.                                                                                                                                                                                                      |
| -10808        | LPTcommunicationError | An error occurred in the parallel port communication with the DAQ device.                                                                                                                                                                                                 |
| -10809        | gateSignalError       | Attempted to start a pulse width measurement with the pulse in the phase to be measured (e.g., high phase for high-level gating).                                                                                                                                         |
| -10810        | internalDriverError   | An unexpected error occurred inside the driver when performing this given operation.                                                                                                                                                                                      |

Table A-1. Error Code Summary (Continued)

| Error<br>Code | Error Name           | Description                                                                                                                                                                                                    |
|---------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -10840        | softwareError        | The contents or the location of the driver file was changed between accesses to the driver.                                                                                                                    |
| -10841        | firmwareError        | The firmware does not support the specified operation, or the firmware operation could not complete due to a data-integrity problem.                                                                           |
| -10842        | hardwareError        | The hardware is not responding to the specified operation, or the response from the hardware is not consistent with the functionality of the hardware.                                                         |
| -10843        | underFlowError       | Because of system limitations, the driver could not write data to the device fast enough to keep up with the device throughput. This error may be returned erroneously when an <b>overRunErr</b> has occurred. |
| -10844        | underWriteError      | New data was not written to the output transfer buffer before the driver attempted to transfer the data to the device.                                                                                         |
| -10845        | overFlowError        | Because of system limitations, the driver could not read data from the device fast enough to keep up with the device throughput; the onboard device memory reported an overflow error.                         |
| -10846        | overWriteError       | The driver wrote new data into the input transfer buffer before the previously acquired data was read.                                                                                                         |
| -10847        | dmaChainingError     | New buffer information was not available at the time of the DMA chaining interrupt; DMA transfers will terminate at the end of the currently active transfer buffer.                                           |
| -10848        | noDMACountAvailError | The driver could not obtain a valid reading from the transfer-count register in the DMA controller.                                                                                                            |

Table A-1. Error Code Summary (Continued)

| Error  |                              |                                                                                                                                                                                                                                                                                            |
|--------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Code   | Error Name                   | Description                                                                                                                                                                                                                                                                                |
| -10849 | OpenFileError                | The configuration file or DSP kernel file could not be opened.                                                                                                                                                                                                                             |
| -10850 | closeFileError               | Unable to close a file.                                                                                                                                                                                                                                                                    |
| -10851 | fileSeekError                | Unable to seek within a file.                                                                                                                                                                                                                                                              |
| -10852 | readFileError                | Unable to read from a file.                                                                                                                                                                                                                                                                |
| -10853 | writeFileError               | Unable to write to a file.                                                                                                                                                                                                                                                                 |
| -10854 | miscFileError                | An error occurred accessing a file.                                                                                                                                                                                                                                                        |
| -10855 | osUnsupportedError           | NI-DAQ does not support the current operation on this particular version of the operating system.                                                                                                                                                                                          |
| -10856 | osError                      | An unexpected error occurred from the operating system while performing the given operation.                                                                                                                                                                                               |
| -10857 | internalKernelError          | An unexpected error occurred inside the kernel of the device while performing this operation.                                                                                                                                                                                              |
| -10858 | hardwareConfigChangedError   | The system has reconfigured the device and has invalidated the existing configuration. The device requires reinitialization to be used again.                                                                                                                                              |
| -10880 | updateRateChangeError        | A change to the update rate is not possible at this time because 1) when waveform generation is in progress, you cannot change the interval timebase or 2) when you make several changes in a row, you must give each change enough time to take effect before requesting further changes. |
| -10881 | partialTransferCompleteError | You cannot do another transfer after a successful partial transfer.                                                                                                                                                                                                                        |

Table A-1. Error Code Summary (Continued)

| Error<br>Code | Error Name                  | Description                                                                                                                                                                                     |  |
|---------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| -10882        | daqPollDataLossError        | The data collected on the Remote SCXI unit was overwritten before it could be transferred to the buffer in the host. Try using a slower data acquisition rate if possible.                      |  |
| -10883        | wfmPollDataLossError        | New data could not be transferred to the waveform buffer of the Remote SCXI unit to keep up with the waveform update rate. Try using a slower waveform update rate if possible.                 |  |
| -10884        | pretrigReorderError         | Could not rearrange data after a pretrigger acquisition completed.                                                                                                                              |  |
| -10885        | overLoadError               | The input signal exceeded the input range of the ADC.                                                                                                                                           |  |
| -10920        | gpctrDataLossError          | One or more data points may have been lost during buffered GPCTR operations due to speed limitations of your system.                                                                            |  |
| -10940        | chassisResponseTimeoutError | No response was received from the Remote SCXI unit within the specified time limit.                                                                                                             |  |
| -10941        | reprogrammingFailedError    | Reprogramming the Remote SCXI unit was unsuccessful. Try again.                                                                                                                                 |  |
| -10942        | invalidResetSignatureError  | An invalid reset signature was sent from the host to the Remote SCXI unit.                                                                                                                      |  |
| -10943        | chassisLockupError          | The interrupt service routine on the remote SCXI unit is taking longer than necessary. You do not need to reset your remote SCXI unit, however, please clear and restart your data acquisition. |  |



# Analog Input Channel, Gain Settings, and Voltage Calculation

This appendix lists the valid channel and gain settings for DAQ boards, describes how NI-DAQ calculates voltage, and describes the measurement of offset and gain adjustment.

## **DAQ Device Analog Input Channel Settings**

Table B-1 lists the valid analog input (ADC) channel settings. If you have one or more AMUX-64T boards and an MIO board, see Chapter 10, *AMUX-64T External Multiplexer Device*, in the *DAQ Hardware Overview Guide* for more information.

Table B-1. Valid Analog Input Channel Settings

|                                            | Settings                      |                               |  |
|--------------------------------------------|-------------------------------|-------------------------------|--|
| Device                                     | Single-ended<br>Configuration | Differential<br>Configuration |  |
| MIO and AI devices (except as noted below) | 0–15                          | 0–7                           |  |
| AT-MIO-64E-3                               | 0–63                          | 0-7, 16-23, 32-39, 48-55      |  |
| Lab and 1200 Series devices                | 0–7                           | 0, 2, 4, 6                    |  |
| LPM devices                                | 0–15                          | _                             |  |
| DAQCard-700                                | 0–15                          | 0–7                           |  |
| 516 devices, DAQCard-500                   | 0–7                           | 0–3 (516 devices only)        |  |
| VXI-MIO-64E-1 and<br>VXI-MIO-64XE-10       | 0–63 and<br>ND_VXI_SC         | 0–7, 16–23, 32–39,<br>48–55   |  |

**Table B-1.** Valid Analog Input Channel Settings (Continued)

|                        | Settings                      |                               |  |
|------------------------|-------------------------------|-------------------------------|--|
| Device                 | Single-ended<br>Configuration | Differential<br>Configuration |  |
| DAQPad-MIO-16XE-50     | 0-15 and ND_CJ_TEMP†          | 0-7 and ND_CJ_TEMP†           |  |
| PCI-6110E<br>PCI-6111E | _<br>_                        | 0–3<br>0–1                    |  |
| PXI MIO and AI devices | ND_PXI_SC                     |                               |  |
| PCI-4451<br>NI 4551    | _                             | 0–1                           |  |
| PCI-4452<br>NI 4552    | _                             | 0–3                           |  |
| PCI-4453               | 0–1                           | _                             |  |
| PCI-4454               | 0–3                           | _                             |  |

† ND\_CJ\_TEMP, ND\_PXI\_SC, and ND\_VXI\_SC are constants that are defined in the following header files:

## **Valid Internal Analog Input Channels**

Table B-2 lists the valid internal channels for analog input devices.

Table B-2. Valid Internal Analog Input Channels

| Device                                                                    | Internal Channels                                                                                       |  |  |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|
| AT-MIO-16XE-10<br>AT-MIO-16XE-50<br>NEC-MIO-16XE-50<br>DAQPad-MIO-16XE-50 | ND_INT_AI_GND ND_INT_REF_5V ND_INT_AO_GND_VS_AI_GND ND_INT_AO_CH_0 ND_INT_CH_0_VS_REF_5V ND_INT_AO_CH_1 |  |  |
|                                                                           | ND_INT_AO_CH_1_VS_REF_5V                                                                                |  |  |

<sup>•</sup> C programmers—NIDAQCNS.H (DATAACQ.H for LabWindows/CVI)

<sup>•</sup> BASIC programmers—NIDAQCNS.INC (Visual Basic for Windows programmers should refer to the *Programming Language Considerations* section in Chapter 1, *Using the NI-DAQ Functions*, for more information.)

<sup>•</sup> Pascal programmers—NIDAQCNS.PAS

 Table B-2.
 Valid Internal Analog Input Channels (Continued)

| Device                                                                                                                                                                                  | Internal Channels                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DAQCard-AI-16E-4<br>NEC-AI-16E-4                                                                                                                                                        | ND_INT_AI_GND ND_INT_REF_5V ND_INT_CM_REF_5V ND_INT_AO_GND_VS_AI_GND                                                                                                                           |
| PCI-MIO-16XE-10<br>PCI-MIO-16XE-50<br>PXI-6030E<br>PXI-6011E<br>PCI-6031E<br>CPCI-6030E<br>CPCI-6011E<br>VXI-MIO-64XE-10                                                                | ND_INT_AI_GND ND_INT_REF_5V ND_INT_AO_GND_VS_AI_GND ND_INT_AO_CH_0 ND_INT_AO_CH_0_VS_REF_5V ND_INT_AO_CH_1 ND_INT_AO_CH_1_VS_REF_5V ND_INT_AO_CH_1_VS_AO_CH_0 ND_INT_DEV_TEMP                  |
| PCI-MIO-16E-1 PCI-MIO-16E-4 PXI-6070E PXI-6040E CPCI-6070E CPCI-6040E VXI-MIO-64E-1 DAQPad-6070E PCI-6025E PXI-6025E PXI-6035E PXI-6035E PXI-6052E PXI-6052E DAQPad-6052E DAQCard-6062E | ND_INT_AI_GND ND_INT_REF_5V ND_INT_CM_REF_5V ND_INT_AO_GND_VS_AI_GND ND_INT_AO_CH_0 ND_INT_AO_CH_0_VS_REF_5V ND_INT_AO_CH_1 ND_INT_AO_CH_1_VS_AO_CH_0 ND_INT_DEV_TEMP ND_INT_AO_CH_1_US_REF_5V |
| AT-AI-16XE-10<br>PCI-6032E<br>PCI-6033E<br>NEC-AI-16XE-50                                                                                                                               | ND_INT_AI_GND ND_INT_REF_5V ND_INT_AO_GND_VS_AI_GND                                                                                                                                            |

 Table B-2.
 Valid Internal Analog Input Channels (Continued)

| Device                                                                                                           | Internal Channels                                                                                                                                    |  |  |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| AT-MIO-16E-1<br>AT-MIO-16E-2<br>AT-MIO-64E-3<br>AT-MIO-16DE-10<br>AT-MIO-16E-10<br>DAQPad-6020E<br>NEC-MIO-16E-4 | ND_INT_AI_GND ND_INT_REF_5V ND_INT_CM_REF_5V ND_INT_AO_GND_VS_AI_GND ND_INT_AO_CH_0 ND_INT_AO_CH_0_VS_REF_5V ND_INT_AO_CH_1 ND_INT_AO_CH_1_VS_REF_5V |  |  |
| PCI-6023E<br>PCI-6034E<br>DAQCard-6023E                                                                          | ND_INT_AI_GND ND_INT_REF_5V ND_INT_CH_REF_5V ND_INT_AO_GND_VS_AI_GND ND_INT_AO_CH_0 ND_INT_AO_CH_0_VS_REF_5V ND_INT_DEV_TEMP                         |  |  |
| DAQCard-AI-16E-4<br>DAQCard-AI-16XE-50                                                                           | ND_INT_AI_GND<br>ND_INT_REF_5V                                                                                                                       |  |  |

 Table B-2.
 Valid Internal Analog Input Channels (Continued)

| Device    | Internal Channels             |  |  |
|-----------|-------------------------------|--|--|
|           | 11 11 11 11                   |  |  |
| PCI-6110E | ND_INT_AI_GND_AMP_0           |  |  |
|           | ND_INT_AI_GND_AMP_1           |  |  |
|           | ND_INT_AI_GND_AMP_2           |  |  |
|           | ND_INT_AI_GND_AMP_3           |  |  |
|           | ND_INT_AO_CH_0_AMP_0          |  |  |
|           | ND_INT_AO_CH_0_AMP_1          |  |  |
|           | ND_INT_AO_CH_0_AMP_2          |  |  |
|           | ND_INT_AO_CH_0_AMP_3          |  |  |
|           | ND_INT_AO_CH_0_VS_REF_AMP_0   |  |  |
|           | ND_INT_AO_CH_0_VS_REF_AMP_1   |  |  |
|           | ND_INT_AO_CH_0_VS_REF_AMP_2   |  |  |
|           | ND_INT_AO_CH_0_VS_REF_AMP_3   |  |  |
|           | ND_INT_AO_CH_1_AMP_0          |  |  |
|           | ND_INT_AO_CH_1_AMP_1          |  |  |
|           | ND_INT_AO_CH_1_AMP_2          |  |  |
|           | ND_INT_AO_CH_1_AMP_3          |  |  |
|           | ND_INT_AO_CH_1_VS_REF_AMP_0   |  |  |
|           | ND_INT_AO_CH_1_VS_REF_AMP_1   |  |  |
|           | ND_INT_AO_CH_1_VS_REF_AMP_2   |  |  |
|           | ND_INT_AO_CH_1_VS_REF_AMP_3   |  |  |
|           | ND_INT_AO_GND_VS_AI_GND_AMP_0 |  |  |
|           | ND_INT_AO_GND_VS_AI_GND_AMP_1 |  |  |
|           | ND_INT_AO_GND_VS_AI_GND_AMP_2 |  |  |
|           | ND_INT_AO_GND_VS_AI_GND_AMP_3 |  |  |
|           | ND_INT_CM_REF_AMP_0           |  |  |
|           | ND_INT_CM_REF_AMP_1           |  |  |
|           | ND_INT_CM_REF_AMP_2           |  |  |
|           | ND_INT_CM_REF_AMP_3           |  |  |
|           | ND_INT_REF_AMP_0              |  |  |
|           | ND_INT_REF_AMP_1              |  |  |
|           | ND_INT_REF_AMP_2              |  |  |
|           | ND_INT_REF_AMP_3              |  |  |

**Device Internal Channels** PCI-6111E ND\_INT\_AI\_GND\_AMP\_0 ND\_INT\_AI\_GND\_AMP\_1 ND\_INT\_AO\_CH\_0\_AMP\_0 ND\_INT\_AO\_CH\_0\_AMP\_1 ND\_INT\_AO\_CH\_0\_VS\_REF\_AMP\_0 ND\_INT\_AO\_CH\_0\_VS\_REF\_AMP\_1 ND\_INT\_AO\_CH\_1 AMP\_0 ND\_INT\_AO\_CH\_1\_AMP\_1 ND\_INT\_AO\_CH\_1\_VS\_REF\_AMP\_0 ND\_INT\_AO\_CH\_1\_VS\_REF\_AMP\_1 ND\_INT\_AO\_GND\_VS\_AI\_GND\_AMP\_0 ND\_INT\_AO\_GND\_VS\_AI\_GND\_AMP\_1 ND\_INT\_CM\_REF\_AMP\_0 ND\_INT\_CM\_REF\_AMP\_1

ND\_INT\_REF\_AMP\_0 ND\_INT\_REF\_AMP\_1

 Table B-2.
 Valid Internal Analog Input Channels (Continued)

Table B-3. Internal Channel Purposes for Analog Input Devices

| Internal Channel          | Purpose                                             |  |
|---------------------------|-----------------------------------------------------|--|
| ND_INT_AI_GND             | Analog Input Channels Offset                        |  |
| ND_INT_AO_GND_VS_AI_GND   | Ground Differential                                 |  |
| ND_INT_AO_CH_0            | Analog Output Channel 0 Offset/Linearity            |  |
| ND_INT_AO_CH_1            | Analog Output Channel 1 Offset/Linearity            |  |
| ND_INT_CM_REF_5V          | Analog Input Channels Offset                        |  |
| ND_INT_REF_5V             | Analog Input Channels Gain                          |  |
| ND_INT_AO_CH_0_VS_REF_5V  | Analog Output Channel 0 Gain                        |  |
| ND_INT_AO_CH_1_VS_REF_5V  | Analog Output Channel 1 Gain                        |  |
| ND_INT_AO_CH_1_VS_AO_CH_0 | Analog Output Channel 1 vs. Analog Output Channel 0 |  |
| ND_INT_DEV_TEMP           | Device Temperature                                  |  |

Internal Channel constants are defined in the following header files:

- C programmers—NIDAQCNS.H (DATAACQ.H for LabWindows/CVI)
- BASIC programmers—NIDAQCNS. INC (Visual Basic for Windows programmers should refer to the *Programming Language Considerations* section in Chapter 1, *Using the NI-DAQ Functions*, for more information.)
- Pascal programmers—NIDAQCNS.PAS



**Note** When the channel is ND\_INT\_DEV\_TEMP, you can compute the temperature from the retrieved voltage by applying the following formulas:

For VXI MIOs:

$$T(^{\circ}C) = ((Voltage \times 100) - 32) \times 5/9$$

• For all other supported E Series devices:

$$T(^{\circ}C) = (Voltage \times 100) - 50$$

## **DAQ Device Gain Settings**

Table B-4 lists the valid gain settings for DAQ devices.

Table B-4. Valid Gain Settings

| Device                                                                                                                                           | Valid Gain Settings                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Most E Series devices                                                                                                                            | -1 (for a gain of 0.5), 1, 2, 5, 10, 20, 50, 100                 |
| All 16XE-50 devices                                                                                                                              | 1, 2, 10, 100                                                    |
| AT-MIO-16X, PCI-MIO-16XE-10, PCI-6031E (MIO-64XE-10), PCI-6032E (AI-16XE-10), PCI-6033E (AI-64XE-10), PXI-6030E, and Lab and 1200 Series devices | 1, 2, 5, 10, 20, 50, 100                                         |
| DAQCard-500/700, 516 and LPM devices                                                                                                             | gain is ignored because gain is always 1                         |
| PCI-6110E, PCI-6111E                                                                                                                             | -2 (for gain of 0.2) 1, 2, 5, 10, 20, 50<br>-1 (for gain of 0.5) |
| PCI-4451, PCI-4452, NI 4551, NI 4552                                                                                                             | -20, -10, 0, 10, 20, 30, 40, 50, 60 (dB)                         |
| PCI-4453, PCI 4454                                                                                                                               | 0 (dB)                                                           |
| 6023E, 6024E, 6025E, 6034E, 6035E,                                                                                                               | -1 (for a gain of 0.5) 1, 10, 100                                |

## **Voltage Calculation**

AI\_VScale and DAQ\_VScale calculate voltage from **reading** as follows:

$$voltage = \left(\frac{reading - offset}{maxReading}\right) \times \left(\frac{maxVolt}{gain \times gainAdjust}\right)$$

#### where:

- **maxReading** is the maximum binary reading for the given board, channel, range, and polarity.
- **maxVolt** is the maximum voltage the board can measure at a gain of 1 in the given range and polarity.

Table B-5 lists the values of **maxReading** and **maxVolt** for different boards.

**Table B-5.** The Values of maxReading and maxVolt

|                                                                                            | Unipolar Mode |         | Bipolar Mode  |         |  |
|--------------------------------------------------------------------------------------------|---------------|---------|---------------|---------|--|
| Device                                                                                     | maxReading    | maxVolt | maxReading    | maxVolt |  |
| Most E Series devices                                                                      | 4,096         | 10 V    | 2,048         | 5 V     |  |
| 16-bit E Series devices                                                                    | 65,536        | 10 V    | 32,768        | 10 V    |  |
| Lab-PC+, Lab-PC-1200,<br>Lab-PC-1200AI,<br>DAQPad-1200,<br>DAQCard-1200,<br>PCI-1200       | 4,096         | 10 V    | 2,048         | 5 V     |  |
| DAQCard-700, LPM devices                                                                   | 4,096         | *       | 2,048         | *       |  |
| 516 devices                                                                                | _             | _       | 32,768        | 5 V     |  |
| DAQCard-500                                                                                | _             | _       | 2,048         | 5 V     |  |
| PCI-6110E and PCI-6111E                                                                    | _             | _       | 2,048         | 10 V    |  |
| DSA devices                                                                                | _             | _       | 2,147,418,112 | 10 V    |  |
| * The value of <b>maxVolt</b> depends on <b>inputRange</b> , as discussed in AI_Configure. |               |         |               |         |  |

For the PC-LPM-16 and DAQCard-1200, gain is ignored, and the following formula is used:

$$voltage = \left(\frac{reading - offset}{maxReading}\right) \times (maxVolt)$$

### Offset and Gain Adjustment

#### Measurement of Offset

To determine the **offset** parameter used in the AI\_VScale and DAQ\_VScale functions, follow this procedure:

- 1. Ground analog input channel *i*, where *i* can be any valid input channel.
- 2. Call the AI\_Read function with gain set to the gain that will be used in your real acquisition (g). The reading given by the AI\_Read function is the value of offset. The offset is only valid for the gain setting at which it was measured. Remember that the data type of offset in the AI\_VScale and DAQ\_VScale functions is floating point, so if you use AI\_Read to get the offset, you have to typecast it before passing it to the scale function.



**Note** Another way to read the offset is to perform multiple readings using a DAQ function call and average them to be more accurate and reduce the effects of noise.

#### **Measurement of Gain Adjustment**

To determine the **gainAdjust** parameter used in the AI\_VScale and DAQ\_VScale functions, follow this procedure:

- 1. Connect the known voltage  $V_{in}$  to channel i.
- 2. Call the AI\_Read function with gain equal to g. Use the reading returned by AI\_Read with the offset value determined above to calculate the real gain.



**Note** You can use the DAQ functions to take many readings and average them instead of using the AI\_Read function.

The real gain is computed as follows:

$$G_R = \left(\frac{\mathbf{reading} - \mathbf{offset}}{\mathbf{maxReading}}\right) \times \left(\frac{\mathbf{maxVolt}}{\mathbf{V_{in}}}\right)$$

Appendix B

The gain adjustment is computed as follows:

$$\mathbf{gainAdjust} = \left[1 - \frac{(g - G_R)}{g}\right]$$



## **NI-DAQ Function Support**

This appendix contains tables that show which DAQ hardware each NI-DAQ function call supports.

The NI-DAQ functions are listed in alphabetical order. A check mark indicates the hardware that the function supports. If you attempt to call an NI-DAQ function using a device that the function does not support, NI-DAQ returns a **deviceSupportError**.

Table C-1 lists the NI-DAQ functions for MIO and AI devices. Table C-2 lists the NI-DAQ functions for the Lab/516/DAQCard-500/700 devices. Table C-3 lists the NI-DAQ functions for the DSA devices. Table C-4 lists the NI-DAQ functions for the Analog Output device family. Table C-5 lists the NI-DAQ functions for the Digital I/O device family. Table C-6 lists the NI-DAQ functions for the PC-TIO-10 device. Table C-7 lists the SCXI functions used with SCXI modules and compatible DAQ boards.

Table C-1. MIO and Al Device Functions

|                     | Device      |                         |              |
|---------------------|-------------|-------------------------|--------------|
| Function            | AI E Series | PCI-6110E and PCI-6111E | MIO E Series |
| AI_Change_Parameter |             | <b>√</b>                |              |
| AI_Check            | 1           | ✓                       | ✓            |
| AI_Clear            | 1           | ✓                       | ✓            |
| AI_Configure        | 1           | ✓                       | ✓            |
| AI_Mux_Config       | 1           | ✓                       | ✓            |
| AI_Read             | 1           | ✓                       | ✓            |
| AI_Read_Scan        | <b>√</b>    | ✓                       | ✓            |
| AI_Setup            | <b>√</b>    | <b>√</b>                | <b>√</b>     |

Table C-1. MIO and AI Device Functions (Continued)

|                             |             | Device                  |              |
|-----------------------------|-------------|-------------------------|--------------|
| Function                    | AI E Series | PCI-6110E and PCI-6111E | MIO E Series |
| AI_VRead                    | <b>√</b>    | <b>✓</b>                | <b>✓</b>     |
| AI_VRead_Scan               | 1           | ✓                       | ✓            |
| AI_VScale                   | 1           | ✓                       | ✓            |
| AO_Change_Parameter         |             | ✓                       | ✓            |
| AO_Configure                |             | ✓                       | ✓            |
| AO_Update                   |             | ✓                       | ✓            |
| AO_VScale                   |             | ✓                       | ✓            |
| AO_VWrite                   |             | ✓                       | ✓            |
| AO_Write                    |             | ✓                       | ✓            |
| Calibrate_E_Series          | 1           | ✓                       | ✓            |
| Config_Alarm_Deadband       | 1           | ✓                       | ✓            |
| Config_ATrig_Event_Message  | 1           | ✓                       | ✓            |
| Config_DAQ_Event_Message    | 1           | ✓                       | ✓            |
| Configure_HW_Analog_Trigger | †           | †                       | †            |
| DAQ_Check                   | 1           | ✓                       | ✓            |
| DAQ_Clear                   | 1           | ✓                       | ✓            |
| DAQ_Config                  | ✓           | <b>✓</b>                | ✓            |
| DAQ_DB_Config               | 1           | ✓                       | ✓            |
| DAQ_DB_HalfReady            | 1           | ✓                       | ✓            |
| DAQ_DB_Transfer             | 1           | ✓                       | ✓            |
| DAQ_Monitor                 | 1           | ✓                       | ✓            |
| DAQ_Op                      | <b>√</b>    | ✓                       | ✓            |
| DAQ_Rate                    | <b>√</b>    | ✓                       | ✓            |
| DAQ_Start                   | 1           | ✓                       | ✓            |
| DAQ_StopTrigger_Config      | <b>√</b>    | ✓                       | <b>√</b>     |
| DAQ_to_Disk                 | ✓           | ✓                       | ✓            |

Table C-1. MIO and AI Device Functions (Continued)

|                        |             | Device                  |              |
|------------------------|-------------|-------------------------|--------------|
| Function               | AI E Series | PCI-6110E and PCI-6111E | MIO E Series |
| DAQ_VScale             | <b>✓</b>    | <b>✓</b>                | <b>✓</b>     |
| DIG_Block_Check        |             |                         | *            |
| DIG_Block_Clear        |             |                         | *            |
| DIG_Block_In           |             |                         | *            |
| DIG_Block_Out          |             |                         | *            |
| DIG_In_Line            | <b>✓</b>    | ✓                       | ✓            |
| DIG_In_Prt             | <b>✓</b>    | ✓                       | ✓            |
| DIG_Line_Config        | <b>✓</b>    | ✓                       | ✓            |
| DIG_Out_Line           | <b>✓</b>    | ✓                       | ✓            |
| DIG_Out_Prt            | <b>✓</b>    | ✓                       | ✓            |
| DIG_Prt_Config         | ✓           | <b>✓</b>                | ✓            |
| DIG_Prt_Status         |             |                         | *            |
| DIG_SCAN_Setup         |             |                         | *            |
| Get_DAQ_Device_Info    | <b>√</b>    | <b>✓</b>                | <b>&gt;</b>  |
| Get_NI_DAQ_Version     | <b>√</b>    | <b>✓</b>                | <b>&gt;</b>  |
| GPCTR_Change_Parameter | ✓           | <b>✓</b>                | <b>\</b>     |
| GPCTR_Config_Buffer    | ✓           | <b>✓</b>                | <b>\</b>     |
| GPCTR_Control          | ✓           | ✓                       | ✓            |
| GPCTR_Set_Application  | ✓           | ✓                       | <b>\</b>     |
| GPCTR_Watch            | <b>√</b>    | <b>✓</b>                | <b>&gt;</b>  |
| Init_DA_Brds           | <b>√</b>    | <b>✓</b>                | <b>&gt;</b>  |
| MIO_Config             | <b>√</b>    |                         | <b>&gt;</b>  |
| SC_2040_Config         | ✓           |                         | ✓            |
| SCAN_Demux             | ✓           | ✓                       | ✓            |
| SCAN_Op                | ✓           | ✓                       | ✓            |
| SCAN_Sequence_Demux    | ✓           |                         | ✓            |

Table C-1. MIO and AI Device Functions (Continued)

|                        |             | Device                  |              |
|------------------------|-------------|-------------------------|--------------|
| Function               | AI E Series | PCI-6110E and PCI-6111E | MIO E Series |
| SCAN_Sequence_Retrieve | <b>✓</b>    |                         | <b>√</b>     |
| SCAN_Sequence_Setup    | ✓           |                         | ✓            |
| SCAN_Setup             | ✓           | ✓                       | ✓            |
| SCAN_Start             | ✓           | ✓                       | 1            |
| SCAN_to_Disk           | ✓           | ✓                       | 1            |
| Select_Signal          | ✓           | ✓                       | ✓            |
| Set_DAQ_Device_Info    | ✓           | ✓                       | ✓            |
| Timeout_Config         | ✓           | <b>✓</b>                | ✓            |
| WFM_Check              |             | <b>✓</b>                | ✓            |
| WFM_ClockRate          |             | <b>✓</b>                | ✓            |
| WFM_DB_Config          |             | <b>✓</b>                | ✓            |
| WFM_DB_HalfReady       |             | <b>✓</b>                | ✓            |
| WFM_DB_Transfer        |             | <b>✓</b>                | ✓            |
| WFM_from_Disk          |             | <b>✓</b>                | ✓            |
| WFM_Group_Control      |             | ✓                       | ✓            |
| WFM_Group_Setup        |             | ✓                       | ✓            |
| WFM_Load               |             | ✓                       | ✓            |
| WFM_Op                 |             | <b>✓</b>                | <b>√</b>     |
| WFM_Rate               |             | ✓                       | ✓            |
| WFM_Scale              |             | ✓                       | ✓            |

<sup>\*</sup> AT-MIO-16DE-10 and 6025E devices only

Table C-2. Lab/516/DAQCard-500/700 Functions

|                            | Device              |                 |         |             |  |  |
|----------------------------|---------------------|-----------------|---------|-------------|--|--|
| Function                   | 516 and LPM Devices | DAQCard-500/700 | Lab-PC+ | 1200 Series |  |  |
| AI_Check                   | 1                   | <b>✓</b>        | ✓       | ✓           |  |  |
| AI_Clear                   | 1                   | 1               | ✓       | ✓           |  |  |
| AI_Configure               | 1                   | 1               | ✓       | 1           |  |  |
| AI_Read                    | 1                   | <b>✓</b>        | ✓       | ✓           |  |  |
| AI_Setup                   | 1                   | <b>✓</b>        | ✓       | ✓           |  |  |
| AI_VRead                   | 1                   | <b>✓</b>        | ✓       | ✓           |  |  |
| AI_VScale                  | 1                   | 1               | ✓       | 1           |  |  |
| AO_Configure               |                     |                 | ✓       | ††          |  |  |
| AO_Update                  |                     |                 | ✓       | ††          |  |  |
| AO_VScale                  |                     |                 | ✓       | ††          |  |  |
| AO_VWrite                  |                     |                 | ✓       | ††          |  |  |
| AO_Write                   |                     |                 | ✓       | ††          |  |  |
| Calibrate_1200             |                     |                 |         | ✓           |  |  |
| Config_Alarm_Deadband      | <b>√</b>            | <b>√</b>        | ✓       | ✓           |  |  |
| Config_ATrig_Event_Message | <b>√</b>            | <b>√</b>        | ✓       | ✓           |  |  |
| Config_DAQ_Event_Message   | <b>√</b>            | <b>√</b>        | ✓       | ✓           |  |  |
| DAQ_Check                  | <b>√</b>            | <b>√</b>        | ✓       | <b>√</b>    |  |  |
| DAQ_Clear                  | ✓                   | <b>✓</b>        | ✓       | ✓           |  |  |
| DAQ_Config                 | ✓                   | <b>✓</b>        | ✓       | ✓           |  |  |
| DAQ_DB_Config              | ✓                   | <b>✓</b>        | ✓       | ✓           |  |  |
| DAQ_DB_HalfReady           | <b>√</b>            | <b>√</b>        | ✓       | 1           |  |  |
| DAQ_DB_Transfer            | ✓                   | <b>√</b>        | ✓       | 1           |  |  |
| DAQ_Monitor                | ✓                   | <b>√</b>        | ✓       | 1           |  |  |
| DAQ_Op                     | ✓                   | <b>√</b>        | ✓       | 1           |  |  |
| DAQ_Rate                   | ✓                   | <b>√</b>        | ✓       | 1           |  |  |
| DAQ_Start                  | ✓                   | <b>√</b>        | ✓       | <b>√</b>    |  |  |
| DAQ_StopTrigger_Config     |                     |                 | ✓       | 1           |  |  |

 Table C-2.
 Lab/516/DAQCard-500/700 Functions (Continued)

|                     | Device              |                 |          |             |  |
|---------------------|---------------------|-----------------|----------|-------------|--|
| Function            | 516 and LPM Devices | DAQCard-500/700 | Lab-PC+  | 1200 Series |  |
| DAQ_to_Disk         | <b>✓</b>            | <b>✓</b>        | <b>√</b> | ./          |  |
|                     | 1                   | 1               | 1        | 1           |  |
| DAQ_VScale          | <b>.</b>            | _               | <i>'</i> | /           |  |
| DIG_Block_Check     |                     |                 | 1        | <b>✓</b>    |  |
| DIG_Block_Clear     |                     |                 | <i>'</i> | <b>✓</b>    |  |
| DIG_Block_In        |                     |                 | <i>y</i> | <b>✓</b>    |  |
| DIG_Block_Out       | 1                   | 1               | <b>✓</b> | <b>✓</b>    |  |
| DIG_In_Line         | 1                   | <b>✓</b>        | <i>y</i> | <b>✓</b>    |  |
| DIG_In_Prt          | <b>✓</b>            | <b>✓</b>        | <b>✓</b> | <b>✓</b>    |  |
| DIG_Out_Line        | 1                   | 1               | <i>y</i> | <i>y</i>    |  |
| DIG_Out_Prt         | 1                   | <i>y</i>        | <b>✓</b> | <b>✓</b>    |  |
| DIG_Prt_Config      | •                   | •               | <i>y</i> | ✓<br>✓      |  |
| DIG_Prt_Status      |                     |                 | 1        |             |  |
| DIG_SCAN_Setup      |                     |                 | ·        | <b>√</b>    |  |
| Get_DAQ_Device_Info | √<br>√              | <b>√</b>        | <b>√</b> | 1           |  |
| Get_NI_DAQ_Version  | •                   | <b>√</b>        | <b>√</b> | •           |  |
| ICTR_Read           | <b>√</b>            | /               | <b>√</b> | <b>√</b>    |  |
| ICTR_Reset          | /                   | /               | <b>√</b> | √<br>√      |  |
| ICTR_Setup          | <b>√</b>            | <b>√</b>        | <b>√</b> |             |  |
| Init_DA_Brds        | <b>√</b>            | <b>√</b>        | <b>√</b> | <b>V</b>    |  |
| Lab_ISCAN_Check     | <b>√</b>            | <b>√</b>        | <b>√</b> | <b>√</b>    |  |
| Lab_ISCAN_Op        | 1                   | <b>√</b>        | 1        | 1           |  |
| Lab_ISCAN_Start     | 1                   | <b>√</b>        | <b>√</b> | <b>√</b>    |  |
| Lab_ISCAN_to_Disk   | <b>√</b>            | ✓               | ✓        | ✓           |  |
| LPM16_Calibrate     | **                  |                 |          |             |  |
| MIO_Config          |                     |                 |          | ✓           |  |
| SCAN_Demux          | 1                   | 1               | 1        | 1           |  |
| Set_DAQ_Device_Info | ✓                   | ✓               | ✓        | ✓           |  |

Table C-2. Lab/516/DAQCard-500/700 Functions (Continued)

|                     |                     | Dev             | vice    |             |
|---------------------|---------------------|-----------------|---------|-------------|
| Function            | 516 and LPM Devices | DAQCard-500/700 | Lab-PC+ | 1200 Series |
| Timeout_Config      | <b>√</b>            | <b>√</b>        | ✓       | <b>/</b>    |
| WFM_Chan_Control    |                     |                 | ✓       | ††          |
| WFM_Check           |                     |                 | ✓       | ††          |
| WFM_ClockRate       |                     |                 | ✓       | ††          |
| WFM_DB_Config       |                     |                 | ✓       | ††          |
| WFM_DB_HalfReady    |                     |                 | ✓       | ††          |
| WFM_DB_Transfer     |                     |                 | ✓       | ††          |
| WFM_from_Disk       |                     |                 | ✓       | ††          |
| WFM_Group_Control   |                     |                 | ✓       | ††          |
| WFM_Group_Setup     |                     |                 | ✓       | ††          |
| WFM_Load            |                     |                 | ✓       | ††          |
| WFM_Op              |                     |                 | ✓       | ††          |
| WFM_Rate            |                     |                 | ✓       | ††          |
| WFM_Scale           |                     |                 | ✓       | ††          |
| ** LPM devices only | ı                   | ı               |         |             |
| ††Except for 1200AI |                     |                 |         |             |

Table C-3. DSA Device Functions

|                          |          |          | Dev      | vice     |          |         |
|--------------------------|----------|----------|----------|----------|----------|---------|
| Function                 | PCI-4451 | PCI-4453 | NI 4551  | PCI-4452 | PCI-4454 | NI 4552 |
| AI_Change_Parameter      | <b>✓</b> | <b>√</b> | <b>√</b> | <b>√</b> | ✓        | ✓       |
| AO_Change_Parameter      | ✓        | ✓        | ✓        |          |          |         |
| AO_Configure             | 1        | ✓        | ✓        |          |          |         |
| Config_HW_Analog_Trigger | 1        | ✓        | ✓        | ✓        | ✓        | ✓       |
| DAQ_Check                | <b>√</b> | <b>√</b> | ✓        | ✓        | ✓        | ✓       |
| DAQ_Clear                | <b>√</b> | <b>√</b> | ✓        | ✓        | ✓        | ✓       |
| DAQ_Config               | <b>√</b> | ✓        | ✓        | ✓        | ✓        | ✓       |
| DAQ_DB_Config            | 1        | ✓        | ✓        | ✓        | ✓        | ✓       |
| DAQ_DB_HalfReady         | 1        | ✓        | ✓        | ✓        | ✓        | ✓       |
| DAQ_DB_Transfer          | <b>√</b> | <b>√</b> | ✓        | ✓        | ✓        | ✓       |
| DAQ_Monitor              | <b>√</b> | <b>√</b> | ✓        | ✓        | ✓        | ✓       |
| DAQ_Op                   | <b>√</b> | <b>√</b> | ✓        | ✓        | ✓        | ✓       |
| DAQ_Set_Clock            | 1        | ✓        | ✓        | ✓        | ✓        | ✓       |
| DAQ_Start                | <b>✓</b> | ✓        | ✓        | ✓        | ✓        | ✓       |
| DAQ_StopTrigger_Config   | 1        | ✓        | ✓        | ✓        | ✓        | ✓       |
| DAQ_to_Disk              | 1        | ✓        | ✓        | ✓        | ✓        | ✓       |
| DAQ_VScale               | <b>√</b> | ✓        | ✓        | ✓        | ✓        | ✓       |
| DIG_In_Line              | <b>√</b> |          | ✓        | ✓        |          | ✓       |
| DIG_In_Prt               | 1        |          | ✓        | ✓        |          | ✓       |
| DIG_Line_Config          | 1        |          | ✓        | ✓        |          | ✓       |
| DIG_Out_Line             | 1        |          | ✓        | ✓        |          | ✓       |
| DIG_Out_Prt              | 1        |          | ✓        | ✓        |          | ✓       |
| DIG_Prt_Config           | 1        |          | ✓        | ✓        |          | ✓       |
| Get_DAQ_Device_Info      | 1        | ✓        | ✓        | ✓        | 1        | 1       |
| GPCTR_Change_Parameter   | ✓        | ✓        | ✓        | ✓        | ✓        | ✓       |
| GPCTR_Config_Buffer      | 1        | ✓        | ✓        | ✓        | 1        | ✓       |
| GPCTR_Control            | 1        | <b>√</b> | 1        | 1        | 1        | 1       |
| GPCTR_Read_Buffer        | 1        | ✓        | ✓        | ✓        | 1        | 1       |
| GPCTR_Set_Application    | 1        | ✓        | ✓        | ✓        | ✓        | ✓       |

 Table C-3.
 DSA Device Functions (Continued)

|                     | Device   |          |          |          |          |          |  |  |  |
|---------------------|----------|----------|----------|----------|----------|----------|--|--|--|
|                     |          | 1        | De       | vice     |          |          |  |  |  |
| Function            | PCI-4451 | PCI-4453 | NI 4551  | PCI-4452 | PCI-4454 | NI 4552  |  |  |  |
| GPCTR_Watch         | 1        | <b>✓</b> | <b>✓</b> | <b>✓</b> | <b>√</b> | <b>√</b> |  |  |  |
| Init_DA_Brds        | ✓        | <b>✓</b> | ✓        | <b>✓</b> | ✓        | ✓        |  |  |  |
| SCAN_Op             | ✓        | <b>✓</b> | ✓        | <b>✓</b> | ✓        | ✓        |  |  |  |
| SCAN_Setup          | ✓        | <b>√</b> | <b>√</b> | <b>√</b> | ✓        | ✓        |  |  |  |
| SCAN_Start          | ✓        | <b>√</b> | <b>√</b> | <b>√</b> | ✓        | ✓        |  |  |  |
| SCAN_to_Disk        | ✓        | <b>√</b> | ✓        | ✓        | <b>√</b> | ✓        |  |  |  |
| Select_Signal       | ✓        | <b>√</b> | ✓        | ✓        | <b>√</b> | ✓        |  |  |  |
| Set_DAQ_Device_Info | ✓        | <b>√</b> | ✓        | ✓        | <b>√</b> | ✓        |  |  |  |
| Timeout_Config      | ✓        | <b>√</b> | ✓        | ✓        | ✓        | ✓        |  |  |  |
| WFM_Check           | <b>√</b> | <b>√</b> | ✓        |          |          |          |  |  |  |
| WFM_DB_Config       | <b>√</b> | <b>√</b> | ✓        |          |          |          |  |  |  |
| WFM_DB_HalfReady    | <b>√</b> | <b>√</b> | ✓        |          |          |          |  |  |  |
| WFM_DB_Transfer     | <b>√</b> | <b>√</b> | ✓        |          |          |          |  |  |  |
| WFM_from_Disk       | ✓        | ✓        | ✓        |          |          |          |  |  |  |
| WFM_Group_Control   | ✓        | ✓        | ✓        |          |          |          |  |  |  |
| WFM_Group_Setup     | ✓        | ✓        | ✓        |          |          |          |  |  |  |
| WFM_Load            | ✓        | ✓        | ✓        |          |          |          |  |  |  |
| WFM_Op              | ✓        | ✓        | ✓        |          |          |          |  |  |  |
| WFM_Scale           | ✓        | ✓        | ✓        |          |          |          |  |  |  |
| WFM_Set_Clock       | ✓        | <b>✓</b> | ✓        |          |          |          |  |  |  |

Table C-4. Analog Output Family Functions

|                          |               |            | Device       | !                |          |
|--------------------------|---------------|------------|--------------|------------------|----------|
| Function                 | AO-2DC Series | AT-AO-6/10 | VXI-AO-48XDC | 6703/6704 Series | 671x     |
| AO_Calibrate             |               | <b>√</b>   |              | <b>✓</b>         |          |
| AO_Change_Parameter      | ✓             |            | ✓            |                  | ✓        |
| AO_Configure             | ✓             | ✓          | ✓            | <b>✓</b>         | ✓        |
| AO_Update                |               | ✓          | ✓            | <b>✓</b>         | ✓        |
| AO_VScale                |               | <b>√</b>   | ✓            | <b>√</b>         | 1        |
| AO_VWrite                | 1             | <b>√</b>   | ✓            | ✓                | ✓        |
| AO_Write                 |               | <b>√</b>   | ✓            | <b>√</b>         | 1        |
| Calibrate_E_Series       |               |            |              |                  | ✓        |
| Config_DAQ_Event_Message |               | ✓          |              |                  | ✓        |
| DIG_In_Line              | ✓             | <b>√</b>   | ✓            | <b>√</b>         | 1        |
| DIG_In_Prt               | ✓             | ✓          | ✓            | <b>✓</b>         | ✓        |
| DIG_Line_Config          |               |            | ✓            | <b>✓</b>         | ✓        |
| DIG_Out_Line             | ✓             | ✓          | ✓            | <b>✓</b>         | ✓        |
| DIG_Out_Prt              | ✓             | ✓          | ✓            | <b>✓</b>         | <b>✓</b> |
| DIG_Prt_Config           | ✓             | ✓          | ✓            | <b>√</b>         | <b>√</b> |
| Get_DAQ_Device_Info      | ✓             |            | ✓            | <b>√</b>         | <b>√</b> |
| Get_NI_DAQ_Version       | ✓             | ✓          | ✓            | <b>√</b>         | <b>√</b> |
| GPCTR_Change_Parameter   |               |            |              |                  | <b>√</b> |
| GPCTR_Config_Buffer      |               |            |              |                  | <b>√</b> |
| GPCTR_Control            |               |            |              |                  | ✓        |
| GPCTR_Set_Application    |               |            |              |                  | ✓        |
| GPCTR_Watch              |               |            |              |                  | ✓        |
| Init_DA_Brds             | ✓             | ✓          |              |                  | ✓        |
| RTSI_Clear               |               | ✓          |              |                  |          |
| RTSI_Clock               |               | ✓          |              |                  |          |
| RTSI_Conn                |               | ✓          |              |                  |          |
| RTSI_DisConn             |               | ✓          |              |                  |          |
| Select_Signal            |               |            |              |                  | ✓        |

Table C-4. Analog Output Family Functions (Continued)

|                     |               | Device     |              |                  |          |  |  |
|---------------------|---------------|------------|--------------|------------------|----------|--|--|
| Function            | AO-2DC Series | AT-AO-6/10 | VXI-AO-48XDC | 6703/6704 Series | 671x     |  |  |
| Set_DAQ_Device_Info |               |            | <b>✓</b>     | <b>✓</b>         | <b>✓</b> |  |  |
| Timeout_Config      |               | 1          |              |                  | ✓        |  |  |
| WFM_Chan_Control    |               | 1          |              |                  |          |  |  |
| WFM_Check           |               | ✓          |              |                  | ✓        |  |  |
| WFM_ClockRate       |               | 1          |              |                  | ✓        |  |  |
| WFM_DB_Config       |               | 1          |              |                  | ✓        |  |  |
| WFM_DB_HalfReady    |               | <b>√</b>   |              |                  | ✓        |  |  |
| WFM_DB_Transfer     |               | <b>√</b>   |              |                  | ✓        |  |  |
| WFM_from_Disk       |               | <b>√</b>   |              |                  | ✓        |  |  |
| WFM_Group_Control   |               | <b>√</b>   |              |                  | ✓        |  |  |
| WFM_Group_Setup     |               | <b>√</b>   |              |                  | ✓        |  |  |
| WFM_Load            |               | 1          |              |                  | ✓        |  |  |
| WFM_Op              |               | 1          |              |                  | ✓        |  |  |
| WFM_Rate            |               | <b>✓</b>   |              |                  | ✓        |  |  |
| WFM_Scale           |               | <b>✓</b>   |              |                  | ✓        |  |  |

Table C-5. Digital I/O Family Functions

|                            | Device     |                        |                          |             |             |          |
|----------------------------|------------|------------------------|--------------------------|-------------|-------------|----------|
| Function                   | AT-DIO-32F | DAQDIO 6533 (DIO-32HS) | DIO-24 (6503) and DIO-96 | PC-OPDIO-16 | VXI-DIO-128 | 652X     |
| Align_DMA_Buffer           | 1          |                        |                          |             |             |          |
| Config_DAQ_Event_Message   | <b>✓</b>   | <b>√</b>               | <b>√</b>                 |             |             |          |
| DIG_Block_Check            | <b>✓</b>   | <b>√</b>               | <b>√</b>                 |             |             |          |
| DIG_Block_Clear            | 1          | 1                      | ✓                        |             |             |          |
| DIG_Block_In               | 1          | <b>√</b>               | <b>√</b>                 |             |             |          |
| DIG_Block_Out              | 1          | 1                      | ✓                        |             |             |          |
| DIG_Block_PG_Config        | <b>✓</b>   | <b>√</b>               |                          |             |             |          |
| DIG_Change_Message_Config  |            |                        |                          |             |             | <b>✓</b> |
| DIG_Change_Message_Control |            |                        |                          |             |             | ✓        |
| DIG_DB_Config              | 1          | 1                      |                          |             |             |          |
| DIG_DB_HalfReady           | <b>✓</b>   | 1                      |                          |             |             |          |
| DIG_DB_Tansfer             | <b>✓</b>   | 1                      |                          |             |             |          |
| DIG_Filter_Config          |            |                        |                          |             |             | <b>✓</b> |
| DIG_GRP_Config             | 1          | 1                      |                          |             |             |          |
| DIG_GRP_Mode               | 1          | 1                      |                          |             |             |          |
| DIG_GRP_Status             | 1          | 1                      |                          |             |             |          |
| DIG_In_Grp                 | 1          | 1                      |                          |             |             |          |
| DIG_In_Line                | 1          | 1                      | ✓                        | 1           | 1           | ✓        |
| DIG_In_Prt                 | 1          | 1                      | ✓                        | 1           | 1           | ✓        |
| DIG_Line_Config            |            | ✓                      |                          |             | ✓           | <b>√</b> |
| DIG_Out_Grp                | <b>√</b>   | ✓                      |                          |             |             |          |
| DIG_Out_Line               | ✓          | ✓                      | ✓                        | ✓           | ✓           | 1        |
| DIG_Out_Prt                | <b>√</b>   | ✓                      | ✓                        | ✓           | ✓           | ✓        |
| DIG_Prt_Config             | <b>√</b>   | ✓                      | ✓                        | <b>√</b>    | ✓           | ✓        |
|                            |            | 1                      | 1                        | 1           | 1           | 1        |

Table C-5. Digital I/O Family Functions (Continued)

|                     | Device     |                        |                          |             |             |      |  |
|---------------------|------------|------------------------|--------------------------|-------------|-------------|------|--|
| Function            | AT-DIO-32F | DAQDIO 6533 (DIO-32HS) | DIO-24 (6503) and DIO-96 | PC-OPDIO-16 | VXI-DIO-128 | 652X |  |
| DIG_SCAN_Setup      |            |                        | <b>✓</b>                 |             |             |      |  |
| DIG_Trigger_Config  |            | 1                      |                          |             |             |      |  |
| Get_DAQ_Device_Info | 1          | 1                      | 1                        | ✓           | 1           | 1    |  |
| Get_NI_DAQ_Version  | 1          | <b>✓</b>               | 1                        | ✓           | ✓           | ✓    |  |
| Init_DA_Brds        | 1          | 1                      | ✓                        | ✓           |             | 1    |  |
| RTSI_Clear          | 1          | 1                      |                          |             |             |      |  |
| RTSI_Clock          |            | 1                      |                          |             |             |      |  |
| RTSI_Conn           | 1          | 1                      |                          |             |             |      |  |
| RTSI_DisConn        | 1          | 1                      |                          |             |             |      |  |
| Set_DAQ_Device_Info | /          | <b>✓</b>               |                          |             | ✓           |      |  |
| Timeout_Config      | 1          | 1                      |                          |             |             |      |  |

Table C-6. Timing Device Functions

|                          |           | Device             |      |
|--------------------------|-----------|--------------------|------|
| Function                 | PC-TIO-10 | 660X (except 6608) | 6608 |
| Calibrate_TIO            |           |                    | ✓    |
| Config_DAQ_Event_Message | ✓         |                    |      |
| CTR_Config               | ✓         |                    |      |
| CTR_EvCount              | ✓         |                    |      |
| CTR_EvRead               | 1         |                    |      |
| CTR_FOUT_Config          | <b>√</b>  |                    |      |

**Table C-6.** Timing Device Functions (Continued)

|                        |           | Device             |          |
|------------------------|-----------|--------------------|----------|
| Function               | PC-TIO-10 | 660X (except 6608) | 8099     |
| CTR_Period             | <b>√</b>  |                    |          |
| CTR_Pulse              | ✓         |                    |          |
| CTR_Rate               | ✓         |                    |          |
| CTR_Reset              | 1         |                    |          |
| CTR_Restart            | ✓         |                    |          |
| CTR_Simul_Op           | 1         |                    |          |
| CTR_Square             | <b>✓</b>  |                    |          |
| CTR_State              | <b>√</b>  |                    |          |
| CTR_Stop               | <b>√</b>  |                    |          |
| DIG_In_Line            | ✓         | ✓                  | ✓        |
| DIG_In_Prt             | ✓         | ✓                  | ✓        |
| DIG_Line_Config        | ✓         | ✓                  | ✓        |
| DIG_Out_Line           | ✓         | ✓                  | ✓        |
| DIG_Out_Prt            | ✓         | ✓                  | ✓        |
| DIG_Prt_Config         | ✓         | ✓                  | ✓        |
| Get_DAQ_Device_Info    | ✓         | ✓                  | ✓        |
| Get_NI_DAQ_Version     | ✓         | ✓                  | ✓        |
| GPCTR_Change_Parameter |           | ✓                  | ✓        |
| GPCTR_Config_Buffer    |           | ✓                  | ✓        |
| GPCTR_Control          |           | ✓                  | ✓        |
| GPCTR_Read_Buffer      |           | ✓                  | ✓        |
| GPCTR_Set_Application  |           | ✓                  | ✓        |
| GPCTR_Watch            |           | <b>√</b>           | <b>√</b> |
| Init_DA_Brds           | <b>√</b>  | ✓                  | <b>√</b> |
| Line_Change_Attribute  |           | ✓                  | ✓        |
| Select_Signal          |           | ✓                  | <b>√</b> |
| Set_DAQ_Device_Info    |           | ✓                  | ✓        |

Table C-7. SCXI Functions

|                         | Module    |           |             |           |           |                       |           |             |           | Device    |           |           |           |                                 |           |           |                  |                 |             |           |             |             |                                                         |         |             |
|-------------------------|-----------|-----------|-------------|-----------|-----------|-----------------------|-----------|-------------|-----------|-----------|-----------|-----------|-----------|---------------------------------|-----------|-----------|------------------|-----------------|-------------|-----------|-------------|-------------|---------------------------------------------------------|---------|-------------|
| Function                | SCXI-1100 | SCXI-1101 | 1102 Series | SCXI-1104 | SCXI-1112 | SCXI-1120, SCXI-1120D | SCXI-1121 | SCXI-1122   | SCXI-1124 | SCXI-1125 | SCXI-1126 | SCXI-1127 | SCXI-1140 | SCXI-1141, SCXI-1142, SCXI-1143 | SCXI-1160 | SCXI-1161 | SCXI-1162/1162HV | SCXI-1163/1163R | VXI-SC-1150 | SCXI-1200 | DAQCard-700 | DIO Devices | Lab and 1200 Devices (except DAQPad-1200 and SCXI-1200) | Devices | LPM Devices |
| SCXI_AO_Write           |           |           |             |           |           |                       |           |             | ✓         |           |           |           |           |                                 |           |           |                  |                 |             |           |             |             |                                                         |         |             |
| SCXI_Cal_Constants      | <b>✓</b>  | <b>\</b>  | <b>`</b>    | <b>`</b>  | <b>`</b>  | >                     | >         | <b>&gt;</b> | ✓         |           | <b>`</b>  |           | ✓         | <b>\</b>                        |           |           |                  |                 |             |           |             |             |                                                         |         |             |
| SCXI_Calibrate          |           |           |             |           | ✓         |                       |           |             |           | ✓         |           |           |           |                                 |           |           |                  |                 |             |           |             |             |                                                         |         |             |
| SCXI_Calibrate_Setup    | ✓         | ✓         |             |           | ✓         |                       | ✓         | ✓           |           |           | ✓         |           |           | ✓                               |           |           |                  |                 |             |           |             |             |                                                         |         |             |
| SCXI_Change_Chan        | ✓         | ✓         | ✓           | ✓         | ✓         | ✓                     | ✓         | ✓           |           | ✓         | ✓         | 1         | 1         | ✓                               |           |           |                  |                 |             |           |             |             |                                                         |         |             |
| SCXI_Configure_Filter   |           |           |             |           |           |                       |           | ✓           |           | ✓         |           |           |           | ✓                               |           |           |                  |                 |             |           |             |             |                                                         |         |             |
| SCXI_Get_Chassis_Info   | /         | ✓         | ✓           | ✓         | ✓         | ✓                     | ✓         | ✓           | 1         | ✓         | ✓         | ✓         | 1         | ✓                               | ✓         | /         | /                | /               | ✓           |           |             |             |                                                         |         |             |
| SCXI_Get_Module_Info    | /         | ✓         | ✓           | ✓         | ✓         | ✓                     | 1         | 1           | 1         | ✓         | ✓         | ✓         | 1         | ✓                               | ✓         | 1         | 1                | /               | ✓           | 1         |             |             |                                                         |         |             |
| SCXI_Get_State          |           |           |             |           |           |                       |           |             |           |           |           |           |           |                                 | ✓         | 1         | 1                | /               |             |           |             |             |                                                         |         |             |
| SCXI_Get_Status         |           |           | ✓           | ✓         |           |                       |           |             | 1         | ✓         | ✓         | 1         |           |                                 | ✓         |           |                  |                 |             |           |             |             |                                                         |         |             |
| SCXI_Load_Config        | ✓         | ✓         | ✓           | ✓         | ✓         | ✓                     | 1         | ✓           | 1         | ✓         | ✓         | 1         | 1         | ✓                               | ✓         | ✓         | 1                | /               | ✓           | 1         | 1           | ✓           | ✓                                                       | 1       | 1           |
| SCXI_ModuleID_Read      | /         | ✓         | ✓           | ✓         | ✓         | ✓                     | ✓         | ✓           | 1         | ✓         | ✓         | 1         | 1         | ✓                               | ✓         | ✓         | ✓                | ✓               | ✓           | ✓         |             |             |                                                         |         |             |
| SCXI_MuxCtr_Setup       |           |           |             |           |           |                       |           |             |           |           |           |           |           |                                 |           |           |                  |                 |             | 1         |             |             | ✓                                                       | 1       |             |
| SCXI_Reset              | /         | ✓         | ✓           | ✓         | ✓         | ✓                     | 1         | ✓           | 1         | ✓         | ✓         | ✓         | 1         | ✓                               | ✓         | 1         | 1                | /               | ✓           | 1         |             |             |                                                         |         |             |
| SCXI_Scale              | /         | ✓         | ✓           | ✓         | ✓         | ✓                     | 1         | ✓           |           | ✓         | ✓         | ✓         | 1         | ✓                               |           |           |                  |                 |             | 1         | 1           |             | ✓                                                       | 1       | ✓           |
| SCXI_SCAN_Setup         | ✓         | ✓         | ✓           | ✓         | ✓         | ✓                     | 1         | ✓           |           | ✓         | ✓         | 1         | 1         | ✓                               |           |           |                  |                 |             | 1         |             |             | ✓                                                       | 1       |             |
| SCXI_Set_Config         | ✓         | 1         | ✓           | 1         | 1         | ✓                     | ✓         | 1           | 1         | 1         | 1         | 1         | 1         | 1                               | 1         | ✓         | 1                | 1               | ✓           |           | 1           | 1           | 1                                                       | 1       | 1           |
| SCXI_Set_Gain           | 1         |           | ✓           |           |           |                       |           | 1           |           | ✓         |           |           |           | 1                               |           |           |                  |                 |             |           |             |             |                                                         |         |             |
| SCXI_Set_Input_Mode     |           |           |             |           |           |                       |           | ✓           |           |           |           |           |           |                                 |           |           |                  |                 |             |           |             |             |                                                         |         |             |
| SCXI_Set_State          |           |           |             |           |           |                       |           |             |           |           |           |           |           |                                 | 1         | ✓         |                  | /               |             |           |             |             |                                                         |         |             |
| SCXI_Single_Chan_Setup  | ✓         | ✓         | ✓           | 1         | 1         | ✓                     | ✓         | 1           |           | 1         | 1         | 1         | 1         | 1                               |           |           |                  |                 |             | 1         | 1           |             | 1                                                       | 1       | 1           |
| SCXI_Track_Hold_Control |           |           |             |           |           |                       |           |             |           |           |           |           | 1         |                                 |           |           |                  |                 |             | 1         | 1           |             | 1                                                       | 1       | 1           |
| SCXI_Track_Hold_Setup   |           |           |             |           |           |                       |           |             |           |           |           |           | 1         |                                 |           |           |                  |                 |             | 1         | 1           |             | 1                                                       | 1       | 1           |



# **Technical Support Resources**

This appendix describes the comprehensive resources available to you in the Technical Support section of the National Instruments Web site and provides technical support telephone numbers for you to use if you have trouble connecting to our Web site or if you do not have internet access.

### **NI Web Support**

To provide you with immediate answers and solutions 24 hours a day, 365 days a year, National Instruments maintains extensive online technical support resources. They are available to you at no cost, are updated daily, and can be found in the Technical Support section of our Web site at www.natinst.com/support.

#### **Online Problem-Solving and Diagnostic Resources**

- KnowledgeBase—A searchable database containing thousands of frequently asked questions (FAQs) and their corresponding answers or solutions, including special sections devoted to our newest products. The database is updated daily in response to new customer experiences and feedback.
- Troubleshooting Wizards—Step-by-step guides lead you through common problems and answer questions about our entire product line. Wizards include screen shots that illustrate the steps being described and provide detailed information ranging from simple getting started instructions to advanced topics.
- Product Manuals—A comprehensive, searchable library of the latest editions of National Instruments hardware and software product manuals.
- Hardware Reference Database—A searchable database containing brief hardware descriptions, mechanical drawings, and helpful images of jumper settings and connector pinouts.
- Application Notes—A library with more than 100 short papers addressing specific topics such as creating and calling DLLs, developing your own instrument driver software, and porting applications between platforms and operating systems.

#### Software-Related Resources

- Instrument Driver Network—A library with hundreds of instrument drivers for control of standalone instruments via GPIB, VXI, or serial interfaces. You also can submit a request for a particular instrument driver if it does not already appear in the library.
- Example Programs Database—A database with numerous, non-shipping example programs for National Instruments programming environments. You can use them to complement the example programs that are already included with National Instruments products.
- Software Library
   —A library with updates and patches to application software, links to the latest versions of driver software for National Instruments hardware products, and utility routines.

## **Worldwide Support**

National Instruments has offices located around the globe. Many branch offices maintain a Web site to provide information on local services. You can access these Web sites from www.natinst.com/worldwide.

If you have trouble connecting to our Web site, please contact your local National Instruments office or the source from which you purchased your National Instruments product(s) to obtain support.

For telephone support in the United States, dial 512 795 8248. For telephone support outside the United States, contact your local branch office:

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 284 5011, Canada (Calgary) 403 274 9391, Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, China 0755 3904939, Denmark 45 76 26 00, Finland 09 725 725 11, France 01 48 14 24 24, Germany 089 741 31 30, Greece 30 1 42 96 427 Hong Kong 2645 3186, India 91805275406, Israel 03 6120092, Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Mexico (D.F.) 5 280 7625, Mexico (Monterrey) 8 357 7695, Netherlands 0348 433466, Norway 32 27 73 00, Singapore 2265886, Spain (Barcelona) 93 582 0251, Spain (Madrid) 91 640 0085, Sweden 08 587 895 00, Switzerland 056 200 51 51, Taiwan 02 2377 1200, United Kingdom 01635 523545

# **Glossary**

| Prefix | Meaning | Value |
|--------|---------|-------|
| p-     | pico-   | 10-12 |
| n-     | nano-   | 10-9  |
| μ-     | micro-  | 10-6  |
| m-     | milli-  | 10-3  |
| k-     | kilo-   | 103   |
| M-     | mega-   | 106   |
| G-     | giga-   | 109   |
| t-     | tera-   | 1012  |

## **Numbers/Symbols**

° degree

 $\leq$  less than or equal to

- minus

% percent

+ plus

± plus or minus

 $\Omega$  ohm

#### A

AC alternating current

ACK acknowledge

A/D analog-to-digital

ADC A/D converter

ADC resolution the resolution of the ADC, which is measured in bits. An ADC with 16 bits

has a higher resolution, and thus a higher degree of accuracy, than a 12-bit

ADC.

ADE Application Development Environment. See IDE.

address character code that identifies a specific location (or series of locations)

in memory

AI Analog Input

AISENSE analog input sense signal

alias a false lower frequency component that appears in sampled data acquired

at too low a sampling rate

AMUX AMUX-64T

API application programming interface

asynchronous (1) hardware—a property of an event that occurs at an arbitrary time,

without synchronization to a reference clock (2) software—a property of a function that begins an operation and returns prior to the completion or

termination of the operation

attenuate to decrease the amplitude of a signal

В

b bit—one binary digit, either 0 or 1

B byte—eight related bits of data, an eight-bit binary number. Also used to

denote the amount of memory required to store one byte of data.

base address a memory address that serves as the starting address for programmable

registers. All other addresses are located by adding to the base address.

BCD binary-coded decimal

binary a number system with a base of 2

bipolar a signal range that includes both positive and negative values (for example,

-5 V to +5 V

buffer temporary storage for acquired or generated data (software)

burst-mode a high-speed data transfer in which the address of the data is sent followed

by back-to-back data words while a physical signal is asserted

bus the group of conductors that interconnect individual circuitry in a computer.

Typically, a bus is the expansion vehicle to which I/O or other devices are

connected. Examples of PC buses are the ISA and PCI bus.

C

C Celsius

CalDAC calibration DAC

calibration constants

cascading process of extending the counting range of a counter chip by connecting to

the next higher counter

channel pin or wire lead to which you apply or from which you read the analog or

digital signal. Analog signals can be single-ended or differential. For digital signals, you group channels to form ports. Ports usually consist of either

four or eight digital channels.

channel clock the clock controlling the time interval between individual channel sampling

within a scan. Boards with simultaneous sampling do not have this clock.

CI computing index

clock hardware component that controls timing for reading from or writing to

groups

counter/timer a circuit that counts external pulses or clock pulses (timing)

CPU central processing unit

D

D/A digital-to-analog

DAC D/A converter

DAQ data acquisition—(1) collecting and measuring electrical signals from

sensors, transducers, and test probes or fixtures and inputting them to a computer for processing; (2) collecting and measuring the same kinds of electrical signals with A/D and/or DIO boards plugged into a computer, and possibly generating control signals with D/A and/or DIO boards in the

same computer

dB decibel—the unit for expressing a logarithmic measure of the ratio of two

signal levels: dB=20log10 V1/V2, for signals in volts

DC direct current

default setting a default parameter value recorded in the driver. In many cases, the default

input of a control is a certain value (often 0) that means use the current default setting. For example, the default input for a parameter may be do not change current setting, and the default setting may be no AMUX-64T boards. If you do change the value of such a parameter, the new value becomes the new setting. You can set default settings for some parameters in the configuration utility or manually using switches located on the

device.

device a plug-in data acquisition board, card, or pad that can contain multiple

channels and conversion devices. Plug-in boards, PCMCIA cards, and devices such as the DAQPad-1200, which connects to your computer parallel port, are all examples of DAQ devices. SCXI modules are distinct from devices, with the exception of the SCXI-1200, which is a hybrid.

DIG digital

digital port See port.

DIN Deutsche Industrie Norme

DIO digital I/O

DIP dual inline package

dithering the addition of Gaussian noise to an analog input signal

DLL dynamic-dynamic link library

DMA direct memory access

DNL differential nonlinearity—a measure in LSB of the worst-case deviation of

code widths from their ideal value of 1 LSB

drivers software that controls a specific hardware device such as a DAQ board or

a GPIB interface board

DSP digital signal processing

Ε

EEPROM electronically erasable programmable read-only memory

EISA Extended Industry Standard Architecture

ETS Equivalent Time Sampling

F

fetch-and-deposit a data transfer in which the data bytes are transferred from the source to the

controller, and then from the controller to the target

FIFO first-in first-out memory buffer—the first data stored is the first data sent

to the acceptor. FIFOs are often used on DAQ devices to temporarily store incoming or outgoing data until that data can be retrieved or output. For example, an analog input FIFO stores the results of A/D conversions until the data can be retrieved into system memory, a process that requires the servicing of interrupts and often the programming of the DMA controller. This process can take several milliseconds in some cases. During this time, data accumulates in the FIFO for future retrieval. With a larger FIFO, longer latencies can be tolerated. In the case of analog output, a FIFO permits faster update rates, because the waveform data can be stored on the FIFO ahead of time. This again reduces the effect of latencies associated

with getting the data from system memory to the DAQ device.

filtering a type of signal conditioning that allows you to filter unwanted signals from

the signal you are trying to measure

ft feet

G

gain The factor by which a signal is amplified; sometimes expressed in decibels

Н

h hour

handle pointer to a pointer to a block of memory; handles reference arrays and

strings. An array of strings is a handle to a block of memory containing

handles to strings.

handshaked digital I/O a type of digital acquisition/generation where a device or module accepts

or transfers data after a digital pulse has been received. Also called latched

digital I/O.

hardware the physical components of a computer system, such as the circuit boards,

plug-in boards, chassis, enclosures, peripherals, and cables

hardware triggering a form of triggering where you set the start time of an acquisition and gather

data at a known position in time relative to a trigger signal

hex hexadecimal

Hz hertz

ı

ID identification

IDE integrated development environment

IEEE Institute of Electrical and Electronics Engineers

instrument driver a set of high-level software functions that controls a specific GPIB, VXI,

or RS-232 programmable instrument or a specific plug-in DAQ board. Instrument drivers are available in several forms, ranging from a function

callable language to a virtual instrument (VI) in LabVIEW.

interrupt a computer signal indicating that the CPU should suspend its current task

to service a designated activity

interrupt level the relative priority at which a device can interrupt

I/O input/output—the transfer of data to/from a computer system involving

communications channels, operator interface devices, and/or data

acquisition and control interfaces

IRQ interrupt request

ISA Industry Standard Architecture

K

k kilo—the standard metric prefix for 1,000, or 10<sup>3</sup>, used with units of

measure such as volts, hertz, and meters

K kilo—the prefix for 1,024, or 2<sup>10</sup>, used with B in quantifying data or

computer memory

kbytes/s a unit for data transfer that means 1,000 or 10<sup>3</sup> bytes/s

Kword 1,024 words of memory

L

LabVIEW laboratory virtual instrument engineering workbench

latched digital I/O a type of digital acquisition/generation where a device or module accepts

or transfers data after a digital pulse has been received. Also called

handshaked digital I/O.

LED light-emitting diode

library a file containing compiled object modules, each comprised of one of more

functions, that can be linked to other object modules that make use of these functions. NIDAQMSC.LIB is a library that contains NI-DAQ functions. The NI-DAQ function set is broken down into object modules so that only the object modules that are relevant to your application are linked in, while

those object modules that are not relevant are not linked.

LSB least significant bit

M

m meters

M (1) Mega, the standard metric prefix for 1 million or 10<sup>6</sup>, when used with

units of measure such as volts and hertz; (2) mega, the prefix for 1,048,576,

or 2<sup>20</sup>, when used with B to quantify data or computer memory

MB megabytes of memory

MBLT eight-byte block transfers in which both the Address bus and the Data bus

are used to transfer data

Mbytes/s a unit for data transfer that means 1 million or 10<sup>6</sup> bytes/s

MC Micro Channel

memory buffer See buffer.

min minutes

MIO multifunction I/O

MITE MXI Interfaces to Everything—a custom ASIC designed by National

Instruments that implements the PCI bus interface. The MITE supports

bus mastering for high speed data transfers over the PCI bus.

MS million samples

MSB most significant bit

multiplexed mode an SCXI operating mode in which analog input channels are multiplexed

into one module output so that your cabled DAQ device has access to the module's multiplexed output as well as the outputs on all other multiplexed modules in the chassis through the SCXI bus. Also called serial mode.

mux multiplexer—a switching device with multiple inputs that sequentially

connects each of its inputs to its output, typically at high speeds, in order

to measure several signals with a single analog input channel

N

NC Normally Closed

NI-DAQ National Instruments driver software for DAQ hardware

NIST National Institute of Standards and Technology

NI-TIO National Instruments Timing Input/Output controller. An ASIC National

Instruments designed for high-speed counter/timer applications.

NO Normally Open

nonlatched digital I/O a type of digital acquisition/generation where LabVIEW updates the digital

lines or port states immediately or returns the digital value of an input line.

Also called immediate digital I/O or non-handshaking.

nonreferenced signal

sources

signal sources with voltage signals that are not connected to an absolute reference or system ground. Also called floating signal sources. Some

common example of nonreferenced signal sources are batteries,

transformers, or thermocouples.

NRSE nonreferenced single-ended mode—all measurements are made with

respect to a common (NRSE) measurement system reference, but the voltage at this reference can vary with respect to the measurement system

ground

0

onboard channels channels provided by the plug-in data acquisition board

onboard RAM optional RAM usually installed into SIMM slots

operating system base-level software that controls a computer, runs programs, interacts with

users, and communicates with installed hardware or peripheral devices

optical coupler,

optocoupler

a device designed to transfer electrical signals by utilizing light waves to provide coupling with electrical isolation between input and output.

Sometimes called optoisolator or photocoupler.

OUT Output

P

parallel mode a type of SCXI operating mode in which the module sends each of its input

channels directly to a separate analog input channel of the device to the

module

pattern generation a type of handshaked (latched) digital I/O in which internal counters

generate the handshaked signal, which in turn initiates a digital transfer. Because counters output digital pulses at a constant rate, this means you can generate and retrieve patterns at a constant rate because the handshaked

signal is produced at a constant rate.

PC personal computer

PC Card a credit-card-sized expansion card that fits in a PCMCIA slot often referred

to as a PCMCIA card

PCI peripheral component interconnect

PCMCIA an expansion bus architecture that has found widespread acceptance as a de

facto standard in notebook-size computers. It originated as a specification for add-on memory cards written by the Personal Computer Memory Card

International Association.

PFI programmable function input

Plug and Play devices devices that do not require dip switches or jumpers to configure resources

on the devices—also called switchless devices

Plug and Play ISA a specification prepared by Microsoft, Intel, and other PC-related

companies that result in PCs with plug-in boards that can be fully configured in software, without jumpers or switches on the boards

port (1) a communications connection on a computer or a remote controller

(2) a digital port, consisting of four or eight lines of digital input and/or

output

posttriggering the technique used on a DAQ board to acquire a programmed number of

samples after trigger conditions are met

pts points

PXI PCI eXtensions for Instrumentation. PXI is an open specification that

builds off the CompactPCI specification by adding

instrumentation-specific features.

R

RAM random-access memory

real time a property of an event or system in which data is processed as it is acquired

instead of being accumulated and processed at a later time

REQ request

rms root mean square

ROM read-only memory

RSE referenced single-ended mode—all measurements are made with respect

to a common reference measurement system or a ground. Also called a

grounded measurement system.

RTSI bus real-time system integration bus—the National Instruments timing bus that

connects DAQ boards directly, by means of connectors on top of the boards,

for precise synchronization of functions

S

s seconds

S samples

sample counter the clock that counts the output of the channel clock, in other words, the

number of samples taken. On boards with simultaneous sampling, this counter counts the output of the scan clock and hence the number of scans.

scan one or more analog or digital input samples. Typically, the number of input

samples in a scan is equal to the number of channels in the input group. For example, one pulse from the scan clock produces one scan which acquires

one new sample from every analog input channel in the group.

scan clock the clock controlling the time interval between scans. On boards with

interval scanning support (for example, the AT-MIO-16F-2), this clock gates the channel clock on and off. On boards with simultaneous sampling

(for example, the PCI-6110E), this clock clocks the ACDs.

scan rate the number of scans per second. For example, a scan rate of 10 Hz means

sampling each channel 10 times per second.

SCXI Signal Conditioning eXtensions for Instrumentation

SDK Software Development Kit

SE single-ended—a term used to describe an analog input that is measured

with respect to a common ground

self-calibrating a property of a DAQ board that has an extremely stable onboard reference

and calibrates its own A/D and D/A circuits without manual adjustments by

the user

shared memory See dual-access memory

signal conditioning the manipulation of signals to prepare them for digitizing

software trigger a programmed event that triggers an event such as data acquisition

software triggering a method of triggering in which you simulate an analog trigger using

software. Also called conditional retrieval.

SS simultaneous sampling—a property of a system in which each input or

output channel is digitized or updated at the same instant

S/s samples per second

STB Strobe Input Signal

STC system timing controller

switchless device devices that do not require dip switches or jumpers to configure resources

on the devices—also called Plug and Play devices

synchronous (1) hardware—a property of an event that is synchronized to a reference

clock (2) software—a property of a function that begins an operation and

returns only when the operation is complete

T

TC terminal count

T/H track-and-hold—a circuit that tracks an analog voltage and holds the value

on command

transfer rate the rate, measured in bytes/s, at which data is moved from source to

destination after software initialization and set up operations; the maximum

rate at which the hardware can operate

trigger any event that causes or starts some form of data capture

TTL transistor-transistor logic

U

UI update interval

unipolar a signal range that is always positive (for example, 0 to +10 V)

update the output equivalent of a scan. One or more analog or digital output

samples. Typically, the number of output samples in an update is equal to the number of channels in the output group. For example, one pulse from the update clock produces one update which sends one new sample to every

analog output channel in the group.

update rate the number of output updates per second

USB Universal Serial Bus

V

V volts

W

waveform multiple voltage readings taken at a specific sampling rate

WF waveform

wire data path between nodes

word the standard number of bits that a processor or memory manipulates at one

time. Microprocessors typically use 8-bit, 16-bit, or 32-bit words.

X

XMS extended memory specification

# Index

| Numbers                                                                       | analog input functions                                              |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------|
| 660X device parameters, Select_Signal function,                               | AI_Change_Parameter, 2-1 to 2-2                                     |
| 2-414 to 2-419                                                                | AI_Check, 2-3 to 2-4                                                |
| 8253 counter (ICTR) functions. See                                            | AI_Clear, 2-5                                                       |
| counter/timer functions.                                                      | AI_Configure, 2-6 to 2-9                                            |
|                                                                               | AI_Get_Overloaded_Channels,                                         |
| Λ                                                                             | 2-10 to 2-11                                                        |
| A                                                                             | AI_MUX_Config, 2-12 to 2-13                                         |
| AI and MIO device function support (table),                                   | AI_Read, 2-14 to 2-15                                               |
| C-1 to C-4                                                                    | AI_Setup, 2-17                                                      |
| AI_Change_Parameter function, 2-1 to 2-2                                      | AI_VRead, 2-18 to 2-19                                              |
| AI_Check function, 2-3 to 2-4                                                 | AI_VScale, 2-21 to 2-22                                             |
| AI_Clear function, 2-5                                                        | Configure_HW_Analog_Trigger,                                        |
| AI_Configure function, 2-6 to 2-9                                             | 2-84 to 2-90                                                        |
| AI_Get_Overloaded_Channels function,                                          | DAQ_Check function, 2-116 to 2-117                                  |
| 2-10 to 2-11                                                                  | DAQ_Clear, 2-118                                                    |
| AI_MUX_Config function, 2-12 to 2-13                                          | DAQ_Config, 2-119 to 2-121                                          |
| AI_Read function, 2-14 to 2-15                                                | DAQ_DB_Config, 2-122                                                |
| AI_Read_Scan function, 2-16                                                   | DAQ_DB_HalfReady, 2-123 to 2-124<br>DAQ_DB_Transfer, 2-125 to 2-126 |
| AI_Setup function, 2-17                                                       | DAQ_DB_Transfer, 2-123 to 2-126<br>DAQ_Monitor, 2-127 to 2-129      |
| AI_VRead function, 2-18 to 2-19                                               | DAQ_Rate, 2-133 to 2-134                                            |
| AI_VRead_Scan function, 2-20<br>AI_VScale function, 2-21 to 2-22              | DAQ_Rate, 2-133 to 2-134<br>DAQ_Set_Clock, 2-135 to 2-136           |
| Align_DMA_Buffer function, 2-23 to 2-25                                       | DAQ_Start, 2-137 to 2-140                                           |
| Amgn_DMA_Burier function, 2-23 to 2-23 Amgn_DMA_Burier function, 2-23 to 2-23 | DAQ_StopTrigger_Config, 2-141 to 2-142                              |
| counter/timer functions.                                                      | DAQ_VScale, 2-146 to 2-147                                          |
| AMUX-64T boards, configuring, 2-12 to 2-13                                    | definition, 1-12                                                    |
| analog input calibration, SCXI modules,                                       | Lab_ISCAN_Check, 2-282 to 2-283                                     |
| 2-345 to 2-347                                                                | Lab_ISCAN_Start, 2-289 to 2-292                                     |
| analog input channel settings                                                 | LabWindows/CVI function panel tree,                                 |
| DAQ devices (table), B-1 to B-2                                               | 1-6 to 1-8                                                          |
| internal channel purposes for analog input                                    | NI-DAQ function support (table)                                     |
| devices (table), B-6                                                          | DSA devices, C-8 to C-9                                             |
| valid internal analog input channels (table),                                 | Lab/516/DAQCard-500/700 devices,                                    |
| B-2 to B-6                                                                    | C-5 to C-7                                                          |
|                                                                               | MIO and AI devices, C-1 to C-3                                      |
|                                                                               | SCAN_Demux, 2-313 to 2-314                                          |

| SCAN_Sequence_Demux,                                    | AO_VScale function, 2-40 to 2-41                            |
|---------------------------------------------------------|-------------------------------------------------------------|
| 2-318 to 2-320                                          | AO_VWrite function, 2-42 to 2-43                            |
| SCAN_Sequence_Retrieve, 2-321                           | AO_Write function, 2-44 to 2-45                             |
| SCAN_Sequence_Setup, 2-322 to 2-324                     | arrays, 1-3                                                 |
| SCAN_Setup, 2-325 to 2-327                              |                                                             |
| SCAN_Start, 2-328 to 2-333                              | n                                                           |
| Select_Signal, 2-401 to 2-423                           | В                                                           |
| analog output calibration, SCXI modules, 2-347 to 2-348 | block transfer functions. <i>See</i> digital I/O functions. |
| analog output functions. See also waveform              | Borland Delphi, 1-4                                         |
| generation functions.                                   | buffer interrupts, enabling/disabling, 2-38                 |
| AO_Change_Parameter, 2-28 to 2-34                       | buffered counting and time measurement                      |
| AO_Configure, 2-35 to 2-38                              | event counting application,                                 |
| AO_Update, 2-39                                         | 2-253 to 2-255                                              |
| AO_VScale, 2-40 to 2-41                                 | period measurement application,                             |
| AO_VWrite, 2-42 to 2-43                                 | 2-255 to 2-257                                              |
| AO_Write, 2-44 to 2-45                                  | pulse width measurement application,                        |
| definition, 1-13                                        | 2-259 to 2-260                                              |
| LabWindows/CVI function panel tree,                     | semi-period measurement application,                        |
| 1-8 to 1-9                                              | 2-257 to 2-258                                              |
| NI-DAQ function support (table)                         | time interval between aux line nad gate                     |
| analog output family of devices,                        | signal transitions, 2-260 to 2-262                          |
| C-10 to C-11                                            |                                                             |
| Lab/516/DAQCard-500/700                                 | C                                                           |
| functions, C-5 to C-7                                   | Calibrate_1200 function, 2-45 to 2-51                       |
| MIO and AI devices, C-2, C-4                            | Calibrate_DSA function, 2-52 to 2-54                        |
| analog trigger event (figure), 2-71                     | description, 2-52 to 2-53                                   |
| AO_Calibrate function, 2-26 to 2-27                     | external calibration, 2-53                                  |
| AO_Change_Parameter function, 2-28 to 2-34              | restoring factory calibration, 2-54                         |
| description, 2-28 to 2-29                               | self-calibration, 2-53                                      |
| end of buffer interrupts, 2-33                          | Calibrate_E_Series function, 2-55 to 2-60                   |
| FIFO transfer condition, 2-30                           | calibration constant loading by                             |
| FIFO transfer count, 2-31 to 2-32                       | NI-DAQ, 2-60                                                |
| ground DAC reference, 2-32                              | calibration constants, 2-56                                 |
| memory transfer width, 2-34                             | changing default load area, 2-57                            |
| output attenuation, 2-32 to 2-33                        | description, 2-55 to 2-57                                   |
| output enable, 2-32                                     | external calibration, 2-58 to 2-59                          |
| reglitching, 2-29                                       | self-calibration, 2-58                                      |
| voltage or current output, 2-29 to 2-30                 |                                                             |
| AO_Configure function, 2-35 to 2-38                     |                                                             |
| AO_Update function, 2-39                                |                                                             |

| Calibrate_TIO function, 2-61 to 2-63           | configuration functions               |
|------------------------------------------------|---------------------------------------|
| calibration constants, 2-62                    | AI_Configure, 2-6 to 2-9              |
| changing default load area, 2-63               | AI_MUX_Config, 2-12 to 2-13           |
| description, 2-61 to 2-63                      | AO_Configure, 2-35 to 2-38            |
| external calibration, 2-63                     | Config_Alarm_Deadband, 2-64 to 2-67   |
| restoring factory calibration, 2-63            | Config_ATrig_Event_Message,           |
| calibration functions                          | 2-68 to 2-71                          |
| AO_Calibrate, 2-26 to 2-27                     | Configure_HW_Analog_Trigger,          |
| Calibrate_1200, 2-45 to 2-51                   | 2-84 to 2-90                          |
| Calibrate_DSA, 2-52 to 2-54                    | CTR_Config, 2-91 to 2-92              |
| Calibrate_E_Series function, 2-55 to 2-60      | CTR_FOUT_Config, 2-97 to 2-98         |
| Calibrate_TIO, 2-61 to 2-63                    | DAQ_Config, 2-119 to 2-121            |
| definition, 1-12                               | DAQ_DB_Config, 2-122                  |
| LabWindows/CVI function panel                  | DAQ_StopTrigger_Config,               |
| tree, 1-6                                      | 2-141 to 2-142                        |
| LPM16_Calibrate, 2-299                         | definition, 1-12                      |
| SCXI_Cal_Constants, 2-341 to 2-348             | DIG_Block_PG_Config, 2-155 to 2-158   |
| SCXI_Calibrate, 2-349 to 2-351                 | DIG_Change_Message_Config,            |
| SCXI_Calibrate_Setup, 2-354 to 2-355           | 2-159 to 2-161                        |
| change notification functions. See digital I/O | DIG_DB_Config, 2-163 to 2-164         |
| functions.                                     | DIG_Filter_Config, 2-169 to 2-170     |
| channel settings. See analog input channel     | DIG_Grp_Config, 2-171 to 2-172        |
| settings.                                      | DIG_Line_Config, 2-184 to 2-185       |
| Config_Alarm_Deadband function                 | DIG_Prt_Config, 2-191 to 2-193        |
| description, 2-64 to 2-67                      | DIG_SCAN_Setup, 2-196 to 2-199        |
| high alarm deadband (figure), 2-66             | DIG_Trigger_Config, 2-200 to 2-202    |
| low alarm deadband (figure), 2-67              | GPCTR_Config_Buffer, 2-222 to 2-223   |
| Config_ATrig_Event_Message function,           | ICTR_Setup, 2-270 to 2-273            |
| 2-68 to 2-71                                   | LabWindows/CVI function panel         |
| Config_DAQ_Event_Message function,             | tree, 1-6                             |
| 2-73 to 2-83                                   | MIO_Config, 2-300 to 2-301            |
| callback functions, 2-83                       | SC_2040_Config function,              |
| DAQ event messages (table), 2-75 to 2-78       | 2-311 to 2-312                        |
| description, 2-73 to 2-81                      | SCXI_Configure_Filter, 2-357 to 2-359 |
| example, 2-82 to 2-83                          | SCXI_Get_Chassis_Info, 2-360 to 2-361 |
| usable parameters for DAQ event codes          | SCXI_Get_Module_Info, 2-362 to 2-363  |
| (table), 2-80                                  | SCXI_Load_Config, 2-368               |
| using the function, 2-81 to 2-83               | SCXI_MuxCtr_Setup, 2-371 to 2-372     |
| valid counters and external timing signals     | SCXI_SCAN_Setup, 2-380 to 2-382       |
| for DAQEvent=9 (table), 2-79                   | SCXI Set Config, 2-383 to 2-386       |

| SCXI_Single_Chan_Setup, 2-394         | DAQ-STC and NI-TIO counters                   |
|---------------------------------------|-----------------------------------------------|
| SCXI_Track_Hold_Setup, 2-397 to 2-400 | (GPCTR)                                       |
| Timeout_Config, 2-434 to 2-435        | GPCTR_Change_Parameter,                       |
| WFM_DB_Config, 2-445 to 2-446         | 2-207 to 2-221                                |
| WFM_Group_Setup, 2-456 to 2-457       | GPCTR_Config_Buffer,                          |
| Configure_HW_Analog_Trigger function, | 2-222 to 2-223                                |
| 2-84 to 2-90                          | GPCTR_Control, 2-224 to 2-226                 |
| description, 2-84 to 2-88             | GPCTR_Read_Buffer,                            |
| ND_ABOVE_HIGH_LEVEL                   | 2-227 to 2-229                                |
| (figure), 2-86                        | GPCTR_Set_Application,                        |
| ND_BELOW_LOW_LEVEL                    | 2-230 to 2-263                                |
| (figure), 2-86                        | GPCTR_Watch, 2-264 to 2-266                   |
| ND_HIGH_HYSTERESIS (figure), 2-87     | LabWindows/CVI function panel                 |
| ND_INSIDE_REGION (figure), 2-87       | tree, 1-11                                    |
| ND_LOW_HYSTERESIS (figure), 2-87      | definition, 1-13                              |
| using the function, 2-88 to 2-90      | LabWindows/CVI function panel tree,           |
| counter/timer functions               | 1-11 to 1-12                                  |
| 8253 counters (ICTR)                  | NI-DAQ function support (table)               |
| ICTR_Read, 2-267 to 2-268             | DSA devices, C-8 to C-9                       |
| ICTR_Reset, 2-269                     | Lab/516/DAQCard-500/700 devices               |
| ICTR_Setup, 2-270 to 2-273            | C-5 to C-7                                    |
| LabWindows/CVI function panel         | MIO and AI devices, C-3                       |
| tree, 1-12                            | timing devices, C-13 to C-14                  |
| Am9513 counters (CTR)                 | counting and time measurement applications.   |
| CTR_Config function, 2-91 to 2-92     | See also buffered counting and time           |
| CTR_EvCount function, 2-93 to 2-94    | measurement.                                  |
| CTR_EvRead function, 2-95 to 2-96     | event counting application,<br>2-232 to 2-233 |
| CTR_FOUT_Config, 2-97 to 2-98         | single period measurement,                    |
| CTR_Period function, 2-99 to 2-100    | 2-234 to 2-236                                |
| CTR_Pulse function, 2-101 to 2-104    | single pulse width measurement,               |
| CTR_Rate, 2-105 to 2-106              | 2-236 to 2-238                                |
| CTR_Reset, 2-107                      | time interval between aux line and gate       |
| CTR_Restart, 2-108                    | signal transitions, 2-241 to 2-243            |
| CTR_Simul_Op, 2-109 to 2-110          | triggered pulse width measurement,            |
| CTR_Square, 2-111 to 2-113            | 2-238 to 2-241                                |
| CTR_State, 2-114                      |                                               |
| CTR_Stop function, 2-115              | n                                             |
| LabWindows/CVI function panel         | D                                             |
| tree, 1-11 to 1-12                    | DAQ_Check function, 2-116 to 2-117            |
|                                       | DAQ_Clear function, 2-118                     |
|                                       | DAQ_Config function, 2-119 to 2-121           |

| DAQ_DB_Config function, 2-122                           | DIG_Block_Check, 2-148              |
|---------------------------------------------------------|-------------------------------------|
| DAQ_DB_HalfReady function,                              | DIG_Block_Clear, 2-149              |
| 2-123 to 2-124                                          | DIG_Block_In, 2-150 to 2-152        |
| DAQ_DB_Transfer function, 2-125 to 2-126                | DIG_Block_Out, 2-153 to 2-154       |
| DAQ_Monitor function, 2-127 to 2-129                    | DIG_Block_PG_Config,                |
| DAQ_Op function, 2-130 to 2-132                         | 2-155 to 2-158                      |
| DAQ_Rate function, 2-133 to 2-134                       | DIG_DB_Config, 2-163 to 2-164       |
| DAQ_Set_Clock function, 2-135 to 2-136                  | DIG_DB_HalfReady, 2-165 to 2-166    |
| DAQ_Start function, 2-137 to 2-140                      | DIG_DB_Transfer, 2-167 to 2-168     |
| DAQ-STC counter functions. See                          | DIG_SCAN_Setup, 2-196 to 2-199      |
| counter/timer functions.                                | change notification                 |
| DAQ_StopTrigger_Config function,                        | definition, 1-13                    |
| 2-141 to 2-142                                          | DIG_Change_Message_Config,          |
| DAQ_to_Disk function, 2-143 to 2-145                    | 2-159 to 2-161                      |
| DAQ_VScale function, 2-146 to 2-147                     | DIG_Change_Message_Control,         |
| data acquisition. See LabWindows/CVI                    | 2-162                               |
| function tree for data acquisition.                     | LabWindows/CVI function panel       |
| data types. See variable data types.                    | tree, 1-10                          |
| demultiplexing functions                                | definition, 1-13                    |
| SCAN_Demux, 2-313 to 2-314                              | DIG_In_Line, 2-180 to 2-181         |
| SCAN_Sequence_Demux,                                    | DIG_In_Prt, 2-182 to 2-183          |
| 2-318 to 2-320                                          | DIG_Line_Config, 2-184 to 2-185     |
| devices                                                 | DIG_Out_Line, 2-187 to 2-188        |
| device numbers, 1-2, 2-274 to 2-277                     | DIG_Out_Prt, 2-189 to 2-190         |
| NI-DAQ function support (tables)                        | DIG_Prt_Config, 2-191 to 2-193      |
| analog output family functions,                         | DIG_Prt_Status, 2-194 to 2-195      |
| C-10 to C-11                                            | DIG_Trigger_Config, 2-200 to 2-202  |
| digital I/O family functions,                           | filtering                           |
| C-12 to C-13                                            | definition, 1-13                    |
| DSA device functions, C-8 to C-9                        | DIG_Filter_Config, 2-169 to 2-170   |
| Lab/516/DAQCard-500/700                                 | group mode                          |
| functions, C-5 to C-7                                   | definition, 1-13                    |
| MIO and AI device functions,                            | DIG_Grp_Config, 2-171 to 2-172      |
| C-1 to C-4                                              | DIG_Grp_Mode, 2-173 to 2-175        |
| SCXI functions, C-15                                    | DIG_Grp_Status, 2-176 to 2-177      |
| timing device functions,<br>C-13 to C-14                | DIG_In_Grp, 2-178 to 2-179          |
|                                                         | DIG_Out_Grp, 2-186                  |
| diagnostic resources, online, D-1 digital I/O functions | DIG_SCAN_Setup, 2-196 to 2-199      |
| block transfer                                          | LabWindows/CVI function panel tree, |
| definition 1-13                                         | 1-9 to 1-10                         |
| 02111111011 1-13                                        |                                     |

NI-DAQ function support (table) EEPROM organization. See also calibration digital I/O family of devices, functions. C-12 to C-13 SCXI\_Cal\_Constants function, 2-348 DSA devices, C-8 to C-9 SCXI Calibrate function, 2-351 Lab/516/DAOCard-500/700 devices. encoder tracking application. See motion C-5 to C-7 encoder tracking applications. MIO and AI devices, C-3 end of buffer interrupts, enabling/disabling, 2-33 DIG\_SCAN\_Setup function, 2-196 to 2-199 error codes, A-1 to A-26 bidirectional port configuration (table), 2-197 digital scanning input group handshaking event counting connections (figure), 2-198 buffered event counting application, digital scanning output group 2-253 to 2-255 handshaking connections GPCTR Set Application function, (figure), 2-199 2-232 to 2-233 DMA buffer. See Align\_DMA\_Buffer simple event counting (figure), 2-233 function. event message functions documentation Config\_Alarm\_Deadband, 2-64 to 2-67 about the National Instruments Config\_ATrig\_Event\_Message, documentation set, xix-xx 2-68 to 2-71 conventions used in manual, xiii-xix Config\_DAQ\_Event\_Message, how to use manual set, xiii 2-73 to 2-83 MIO and AI device terminology (table), definition, 1-14 xvi-xix LabWindows/CVI function panel related documentation, xx tree, 1-12 double-buffered digital I/O functions DIG\_DB\_Config, 2-163 to 2-164 F DIG DB HalfReady, 2-165 to 2-166 FIFO transfer condition, 2-30 DIG\_DB\_Transfer, 2-167 to 2-168 DSA device function support (table), FIFO transfer count, 2-31 to 2-32 C-8 to C-9 filtering function. See digital I/O functions. frequency shift keying, 2-251 to 2-253 F G E series, 671X, NI 5411, and DSA devices E series and 671X signal name gain adjustment, B-9 to B-10 equivalencies (table), 2-420 gain settings, DAQ devices (table), B-7 parameters for Select Signal function, Get DAO Device Info function, 2-401 to 2-413 2-203 to 2-205 Get NI DAQ Version function, 2-206 glitches, 2-29

| GPCTR_Change_Parameter function,      | ND_SOURCE_POLARITY, 2-211                          |
|---------------------------------------|----------------------------------------------------|
| 2-207 to 2-221                        | ND_START_TRIGGER, 2-211                            |
| default source selection for          | ND_UP_DOWN, 2-219 to 2-220                         |
| ND_SIMPLE_EVENT_CNT or                | hardware control, 2-219 to 2-220                   |
| ND_BUFFERED_EVENT_CNT                 | software control, 2-219                            |
| (table), 2-210                        | ND_Z_INDEX_ACTIVE, 2-215 to 2-216                  |
| gpctrNum parameter, legal values for  | example, 2-216 to 2-217                            |
| (table), 2-208                        | X4 quadrature decoding                             |
| ND_AUTOINCREMENT_COUNT,               | (figure), 2-216                                    |
| 2-219                                 | ND_Z_INDEX_VALUE, 2-215                            |
| ND_AUX_LINE, 2-217 to 2-218           | paramValue legal values                            |
| default Aux line selection            | other counter set to                               |
| (table), 2-218                        | ND_OTHER_GPCTR_TC                                  |
| legal values, 2-217                   | (table), 2-210                                     |
| ND_AUX_LINE_POLARITY, 2-218           | $paramID = ND\_SOURCE$ and                         |
| ND_BUFFER_MODE, 2-220                 | $gpctrNum = ND\_Counter\_X$                        |
| ND_COUNT_1, ND_COUNT_2,               | (table), 2-209                                     |
| ND_COUNT_3, ND_COUNT_4,<br>2-219      | paramID = ND_SOURCE and                            |
|                                       | $gpctrNum = ND_RTC_X, 2-209$                       |
| ND_COUNTING_SYNCHRONOUS,<br>2-220     | GPCTR_Config_Buffer function,                      |
| ND_ENCODER_TYPE, 2-211 to 2-213       | 2-222 to 2-223                                     |
| ND QUADRATURE ENCODER                 | GPCTR_Control function, 2-224 to 2-226             |
| X1, 2-211 to 2-212                    | GPCTR_Read_Buffer function,                        |
| ND_QUADRATURE_ENCODER_                | 2-227 to 2-229                                     |
| X2, 2-212                             | GPCTR_Set_Application function,                    |
| ND_QUADRATURE_ENCODER_                | 2-230 to 2-263                                     |
| X4, 2-212 to 2-213                    | descriptions for application (table), 2-231        |
| ND_TWO_PULSE_COUNTING,                | ND_BUFFERED_EVENT_CNT                              |
| 2-213                                 | application, 2-253 to 2-255                        |
| ND_GATE, 2-214 to 2-215               | ND_BUFFERED_PERIOD_MSR application, 2-255 to 2-257 |
| default gate selection (table), 2-215 | ND BUFFERED POSITION MSR                           |
| legal values (table), 2-214           | application, 2-262 to 2-263                        |
| ND_GATE_POLARITY, 2-215               | ND_BUFFERED_PULSE_WIDTH_MS                         |
| ND_INITIAL_COUNT, 2-218               | R application, 2-259 to 2-260                      |
| ND_OTHER_GPCTR_TC, definition of      | ND_BUFFERED_SEMI_PERIOD_MS                         |
| other counter for (table), 2-210      | R application, 2-257 to 2-258                      |
| ND_OUTPUT_MODE, 2-220                 | ND_BUFFERED_TWO_SIGNAL_EDG                         |
| ND_OUTPUT_POLARITY, 2-220             | E_SEPARATION_MSR application,                      |
| ND_PRESCALE_VALUE, 2-211              | 2-260 to 2-262                                     |
| ND_SOURCE, 2-208 to 2-209             | ND_FSK application, 2-251 to 2-253                 |
| legal values (table), 2-209           |                                                    |
| S 1 - //                              |                                                    |

| ND_POSITION_MSR application, 2-243 to 2-244            | H                                                                |
|--------------------------------------------------------|------------------------------------------------------------------|
| ND_PULSE_TRAIN_GNR application, 2-250 to 2-251         | handshaking functions DIG_Grp_Mode, 2-173 to 2-175               |
|                                                        | DIG_Grp_Status, 2-176 to 2-177                                   |
| ND_RETRIG_PULSE_GNR application, 2-248 to 2-249        | DIG_Prt_Status, 2-194 to 2-195                                   |
| ND_SIMPLE_EVENT_CNT application,                       | DIG_SCAN_Setup, 2-196 to 2-199                                   |
| 2-232 to 2-233                                         | high alarm deadband (figure), 2-66                               |
| ND_SINGLE_PERIOD_MSR                                   |                                                                  |
| application, 2-234 to 2-236                            | 1                                                                |
| ND_SINGLE_PULSE_GNR application,                       |                                                                  |
| 2-244 to 2-246                                         | ICTR_Read function, 2-267 to 2-268<br>ICTR_Reset function, 2-269 |
| ND_SINGLE_PULSE_WIDTH_MSR                              | ICTR_Reset function, 2-209 ICTR_Setup function, 2-270 to 2-273   |
| application, 2-236 to 2-238                            | Init_DA_Brds function, 2-274 to 2-281                            |
| ND_SINGLE_TRIG_PULSE_GRN                               | default conditions for specific devices,                         |
| application, 2-246 to 2-248                            | 2-277 to 2-281                                                   |
| ND_TRIG_PULSE_WIDTH_MSR                                | description, 2-274 to 2-277                                      |
| application, 2-238 to 2-241 ND_TWO_SIGNAL_EDGE_SEPARAT | device numbers, 2-274 to 2-277                                   |
| ION_MSR application, 2-241 to 2-243                    | initialization/utility functions                                 |
| GPCTR_Watch function, 2-264 to 2-266                   | Align_DMA_Buffer, 2-23 to 2-25                                   |
| grounding of DAC reference, 2-32                       | Configure_HW_Analog_Trigger,                                     |
| group digital I/O functions                            | 2-84 to 2-90                                                     |
| definition, 1-13                                       | definition, 1-12                                                 |
| DIG_Block_Check, 2-148                                 | Get_DAQ_Device_Info, 2-203 to 2-205                              |
| DIG_Block_Clear, 2-149                                 | Get_NI_DAQ_Version, 2-206                                        |
| DIG_Block_In, 2-150 to 2-152                           | Init_DA_Brds, 2-274 to 2-281                                     |
| DIG_Block_Out, 2-153 to 2-154                          | LabWindows/CVI function panel                                    |
| DIG_Block_PG_Config, 2-155 to 2-158                    | tree, 1-6                                                        |
| DIG_DB_Config, 2-163 to 2-164                          | Line_Change Attribute, 2-296 to 2-298                            |
| DIG_DB_HalfReady, 2-165 to 2-166                       | SCAN_Sequence_Setup, 2-322 to 2-324                              |
| DIG_DB_Transfer, 2-167 to 2-168                        | Set_DAQ_Device_Info, 2-423 to 2-433                              |
| DIG_Grp_Config, 2-171 to 2-172                         | Timeout_Config, 2-434 to 2-435                                   |
| DIG_Grp_Mode, 2-173 to 2-175                           | interval counter/timer functions. See                            |
| DIG_Grp_Status, 2-176 to 2-177                         | counter/timer functions.                                         |
| DIG_In_Grp, 2-178 to 2-179                             |                                                                  |
| DIG_Out_Grp, 2-186                                     | L                                                                |
| DIG_SCAN_Setup, 2-196 to 2-199                         | <del>-</del>                                                     |
| -                                                      | Lab/516/DAQCard-500/700 function support (table), C-5 to C-7     |
|                                                        | Lab_ISCAN_Check function, 2-282 to 2-283                         |
|                                                        | Lab_ISCAN_Op function, 2-285 to 2-288                            |

| Lab_ISCAN_Start function, 2-289 to 2-292     | M                                      |
|----------------------------------------------|----------------------------------------|
| Lab_ISCAN_to_Disk function,                  | manual. See documentation.             |
| 2-293 to 2-295                               | memory transfer width, 2-34            |
| LabWindows/CVI function tree for data        | Microsoft Visual Basic for Windows,    |
| acquisition, 1-6 to 1-12                     | 1-4 to 1-5                             |
| 8253 counter (ICTR) functions, 1-12          | MIO and AI devices                     |
| Am9513 counter (CTR) functions,              | function support (table), C-1 to C-4   |
| 1-11 to 1-12                                 | terminology for (table), xvi-xix       |
| analog input functions, 1-6 to 1-8           | MIO_Config function, 2-300 to 2-301    |
| analog output functions, 1-8 to 1-9          | Mode 0 through Mode 5 timing diagrams, |
| block transfer digital I/O functions,        | 2-271 to 2-272                         |
| 1-8 to 1-9                                   | motion encoder tracking applications   |
| change notification digital I/O              | ND_BUFFERED_POSITION_MSR,              |
| functions, 1-10                              | 2-262 to 2-263                         |
| configuration and calibration functions, 1-6 | ND_POSITION_MSR, 2-243 to 2-244        |
| counter/timer functions, 1-11 to 1-12        | multiple-point analog input functions  |
| DAQ-STC and NI-TIO counters                  | AI_Get_Overloaded_Channels,            |
| (GPCTR), 1-11                                | 2-10 to 2-11                           |
| digital input/output functions, 1-9 to 1-10  | AI_Read_Scan function, 2-16            |
| event messaging functions, 1-12              | AI_VRead_Scan function, 2-20           |
| filtering digital I/O function, 1-10         | Configure_HW_Analog_Trigger,           |
| group mode digital I/O functions,            | 2-84 to 2-90                           |
| 1-9 to 1-10                                  | DAQ_Check function, 2-116 to 2-117     |
| initialization/utilities functions, 1-6      | DAQ_Clear, 2-118                       |
| low-level analog input functions,            | DAQ_Config, 2-119 to 2-121             |
| 1-7 to 1-8                                   | DAQ_DB_Config, 2-122                   |
| low-level waveform generation functions,     | DAQ_DB_HalfReady, 2-123 to 2-124       |
| 1-8 to 1-9                                   | DAQ_DB_Transfer, 2-125 to 2-126        |
| multiple-point analog input functions,       | DAQ_Monitor, 2-127 to 2-129            |
| 1-7 to 1-8                                   | DAQ_Op, 2-130 to 2-132                 |
| RTSI bus functions, 1-12                     | DAQ_Rate, 2-133 to 2-134               |
| SCXI functions, 1-10 to 1-11                 | DAQ_Set_Clock, 2-135 to 2-136          |
| single-point analog input functions,         | DAQ_Start, 2-137 to 2-140              |
| 1-6 to 1-7                                   | DAQ_StopTrigger_Config,                |
| single-point analog output functions, 1-8    | 2-141 to 2-142                         |
| waveform generation functions, 1-8 to 1-9    | DAQ_to_Disk, 2-143 to 2-145            |
| Line_Change Attribute function,              | DAQ_VScale, 2-146 to 2-147             |
| 2-296 to 2-298                               | definition, 1-13                       |
| low alarm deadband (figure), 2-67            | Lab_ISCAN_Check, 2-282 to 2-283        |
| LPM16_Calibrate function, 2-299              | Lab_ISCAN_Op, 2-285 to 2-288           |
|                                              | Lab_ISCAN_Start, 2-289 to 2-292        |

| Lab_ISCAN_to_Disk, 2-293 to 2-295                                                                                                                                                                                                                                    | P                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LabWindows/CVI function panel tree, 1-7 to 1-8  SCAN_Demux, 2-313 to 2-314  SCAN_Op, 2-315 to 2-317  SCAN_Sequence_Demux, 2-318 to 2-320  SCAN_Sequence_Retrieve, 2-321  SCAN_Sequence_Setup, 2-322 to 2-324  SCAN_Setup, 2-325 to 2-327  SCAN_Start, 2-328 to 2-333 | page boundaries, 2-25 PCI-MITE DMA transfers enabling/disabling end-of-buffer interrupts, 2-33 memory transfer width, 2-34 period measurement applications buffered period measurement, 2-255 to 2-257 buffered semi-period measurement, 2-257 to 2-258            |
| SCAN_to_Disk, 2-334 to 2-337<br>Select_Signal, 2-401 to 2-423                                                                                                                                                                                                        | single period measurement,<br>2-234 to 2-236                                                                                                                                                                                                                       |
| multiplexing operations  AI_MUX_Config function, 2-12 to 2-13  SCXI_MuxCtr_Setup function,  2-371 to 2-372  SCXI_Single_Chan_Setup                                                                                                                                   | Port 0 digital I/O lines reserved (table), 2-13 problem-solving and diagnostic resources, online, D-1 programming language considerations, 1-4 to 1-5                                                                                                              |
| N National Instruments Web support, D-1 to D-2 NI-DAQ constants include file, Microsoft Visual Basic for Windows, 1-5                                                                                                                                                | pulse generation applications frequency shift keying, 2-251 to 2-253 retriggerable, 2-248 to 2-249 single pulse, 2-244 to 2-246 triggered, 2-246 to 2-248 pulse generation timing considerations, 2-103 to 2-104                                                   |
| O offset and gain adjustment gain adjustment measurement,                                                                                                                                                                                                            | pulse generation timing (figure), 2-103<br>pulse timing for<br>pulseWidth=0 (figure), 2-104<br>pulse train generation application,<br>2-250 to 2-251                                                                                                               |
| B-9 to B-10 offset measurement, B-9 online problem-solving and diagnostic resources, D-1 output attenuation, 2-32 to 2-33 output enable setting, 2-32 overflow detection, 2-96                                                                                       | pulse width measurement applications<br>buffered pulse width, 2-259 to 2-260<br>single pulse width, 2-236 to 2-238<br>single triggered pulse width<br>measurement, 2-238 to 2-241<br>time interval between aux line and gate<br>signal transitions, 2-241 to 2-243 |

| R                                           | LabWindows/CVI function panel tree,         |
|---------------------------------------------|---------------------------------------------|
| reglitching, 2-29                           | 1-10 to 1-11                                |
| retriggerable pulse generation application, | NI-DAQ function support (table), C-15       |
| 2-248 to 2-249                              | SCXI_AO_Write function, 2-338 to 2-340      |
| RTSI bus functions                          | SCXI_Cal_Constants function, 2-341 to 2-348 |
| definition, 1-14                            | analog input calibration, 2-345 to 2-347    |
| LabWindows/CVI function panel               | analog output calibration, 2-347 to 2-348   |
| tree, 1-12                                  | EEPROM organization, 2-348                  |
| NI-DAQ function support (table)             | parameter discussion, 2-342 to 2-345        |
| analog output family of devices, C-10       | SCXI_Calibrate function, 2-349 to 2-351     |
| digital I/O family of devices, C-13         | SCXI_Calibrate_Setup function,              |
| RTSI_Clear function, 2-302                  | 2-354 to 2-355                              |
| RTSI_Clock function, 2-303 to 2-304         | SCXI_Change_Chan function, 2-356            |
| RTSI_Conn function, 2-310                   | SCXI_Configure_Filter function,             |
| AT-AO-6/10, DAQPad-6713, and                | 2-357 to 2-359                              |
| DIO-32F RTSI bus signals                    | SCXI_Get_Chassis_Info function,             |
| (table), 2-305                              | 2-360 to 2-361                              |
| DIO 6533 RTSI bus signals (table), 2-306    | SCXI_Get_Module_Info function,              |
| examples, 2-307 to 2-308                    | 2-362 to 2-363                              |
| rules for RTSI connections, 2-309           | SCXI_Get_State function, 2-364 to 2-365     |
| using the function, 2-307 to 2-308          | SCXI_Get_Status function, 2-366 to 2-367    |
| RTSI_DisConn function, 2-310                | SCXI_Load_Config function, 2-368            |
| K151_Disconn function, 2 310                | SCXI_ModuleID_Read function,                |
|                                             | 2-369 to 2-370                              |
| \$                                          | SCXI_MuxCtr_Setup function,                 |
| SC_2040_Config function, 2-311 to 2-312     | 2-371 to 2-372                              |
| SCAN_Demux function, 2-313 to 2-314         | SCXI_Reset function, 2-373 to 2-375         |
| SCAN_Op function, 2-315 to 2-317            | SCXI_Scale function, 2-376 to 2-379         |
| SCAN_Sequence_Demux function,               | SCXI_SCAN_Setup function, 2-380 to 2-382    |
| 2-318 to 2-320                              | SCXI_Set_Config function, 2-383 to 2-386    |
| SCAN_Sequence_Retrieve function, 2-321      | SCXI_Set_Filter function. See               |
| SCAN_Sequence_Setup function,               | SCXI_Configure_Filter function.             |
| 2-322 to 2-324                              | SCXI_Set_Gain function, 2-387 to 2-388      |
| SCAN_Setup function, 2-325 to 2-327         | SCXI_Set_Input_Mode function, 2-389         |
| SCAN_Start function, 2-328 to 2-333         | SCXI_Set_State function, 2-390 to 2-391     |
| SCAN_to_Disk function, 2-334 to 2-337       | SCXI_Set_Threshold function, 2-392 to 2-393 |
| SCXI chassis IDs, 1-2                       | SCXI_Single_Chan_Setup function, 2-394      |
| SCXI functions                              | SCXI_Track_Hold_Control function,           |
| definition, 1-13                            | 2-395 to 2-396                              |
| definition, 1-13                            | SCXI_Track_Hold_Setup function,             |
|                                             | 2-397 to 2-400                              |

Select\_Signal function, 2-401 to 2-423
660X device parameters, 2-414 to 2-419
E series, 671x, NI 411, and DSA device parameters, 2-401 to 2-413
E series and 671X signal name equivalencies (table), 2-420
ND\_BOARD\_CLOCK signal
660X devices, 2-416

660X devices, 2-416 definition (table), 2-404 E series, 671X, NI 5411, and DSA devices, 2-413

ND\_CONFIGURABLE\_FILTER, 2-416

ND\_FREQ\_OUT signal definition (table), 2-404 E series, 671*X*, NI 5411, and DSA devices, 2-411

ND\_GPCTR0\_OUTPUT signal definition (table), 2-404 E series, 671*x*, NI 5411, and DSA devices, 2-410

ND\_GPCTR1\_OUTPUT signal definition (table), 2-404 E series, 671*x*, NI 5411, and DSA devices, 2-410

ND\_IN\_CHANNEL\_CLOCK\_ TIMEBASE signal definition (table), 2-403 E series, 671*x*, NI 5411, and DSA devices, 2-407

ND\_IN\_CONVERT signal definition (table), 2-403 E series, 671x, NI 5411, and DSA devices, 2-406 to 2-407

ND\_IN\_EXTERNAL\_GATE signal definition (table), 2-403
E series, 671*x*, NI 5411, and DSA devices, 2-405

ND\_IN\_SCAN\_CLOCK\_TIMEBASE signal definition (table), 2-403

E series, 671*x*, NI 5411, and DSA devices, 2-407

ND\_IN\_SCAN\_START signal definition (table), 2-403 E series, 671*X*, NI 5411, and DSA devices, 2-406

ND\_IN\_START\_TRIGGER signal definition (table), 2-403
E series, 671x, NI 5411, and DSA devices, 2-404 to 2-405

ND\_IN\_STOP\_TRIGGER signal definition (table), 2-403
E series, 671*X*, NI 5411, and DSA devices, 2-405

ND\_OUT\_EXTERNAL\_GATE signal definition (table), 2-403
E series, 671X, NI 5411, and
DSA devices, 2-408 to 2-409

ND\_OUT\_START\_TRIGGER signal definition (table), 2-403
E series, 671*X*, NI 5411, and DSA devices, 2-407 to 2-408

ND\_OUT\_UPDATE signal definition (table), 2-403 E series, 671*X*, NI 5411, and DSA devices, 2-408

ND\_OUT\_UPDATE\_CLOCK\_ TIMEBASE signal definition (table), 2-403 E series, 671*X*, NI 5411, and DSA devices, 2-409

ND\_PFI\_0 through ND\_PFI\_9 signals 660X devices, 2-417 to 2-419 definition (table), 2-404 E series, 671x, NI 5411, and DSA devices, 2-409 to 2-410

ND\_PLL\_REF\_SOURCE signal definition (table), 2-403 E series, 671x, NI 5411, and DSA devices, 2-413

| ND_PXI_BACKPLANE_CLOCK                                        | single triggered pulse width measurement                                                       |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| signal, 2-419                                                 | application, 2-238 to 2-241                                                                    |
| ND_RTSI_0 through ND_RTSI_6                                   | single-point analog input functions                                                            |
| signals                                                       | AI_Change_Parameter, 2-1 to 2-2                                                                |
| 660X devices, 2-414 to 2-415                                  | AI_Check, 2-3 to 2-4                                                                           |
| definition (table), 2-404                                     | AI_Clear, 2-5                                                                                  |
| E series, 671 <i>x</i> , NI 5411, and DSA                     | AI_Configure, 2-6 to 2-9                                                                       |
| devices, 2-411 to 2-412                                       | AI_Read, 2-14 to 2-15                                                                          |
| ND_RTSI_CLOCK signal                                          | AI_Setup, 2-17                                                                                 |
| 660X devices, 2-414 to 2-415                                  | AI_VRead, 2-18 to 2-19                                                                         |
| definition (table), 2-404                                     | AI_VScale, 2-21 to 2-22                                                                        |
| E series, 671 <i>X</i> , NI 5411, and DSA                     | definition, 1-12                                                                               |
| devices, 2-412 to 2-413                                       | LabWindows/CVI function panel tree,                                                            |
| ND_SCANCLK_LINE signal                                        | 1-6 to 1-7                                                                                     |
| definition (table), 2-404                                     | single-point analog output functions                                                           |
| E series, 671 <i>X</i> , NI 5411, and DSA                     | AO_Calibrate, 2-26 to 2-27                                                                     |
| devices, 2-411                                                | AO_Change_Parameter, 2-28 to 2-34                                                              |
| ND_START_TRIGGER signal,                                      | AO_Configure, 2-35 to 2-38                                                                     |
| 2-415 to 2-416                                                | AO_Update, 2-39                                                                                |
| signals with no DSA support, 2-402                            | AO_VScale, 2-40 to 2-41                                                                        |
| special considerations when                                   | AO_VWrite, 2-42 to 2-43                                                                        |
| source = ND_CONVERT, 2-413                                    | AO_Write, 2-44 to 2-45                                                                         |
| using the function, 2-419 to 2-422                            | definition, 1-13                                                                               |
| Set_DAQ_Device_Info function,                                 | LabWindows/CVI function panel                                                                  |
| 2-423 to 2-433                                                | tree, 1-8                                                                                      |
| data transfer modes, for supported devices                    | software-related resources, D-2                                                                |
| (table), 2-427 to 2-433                                       | square wave generation timing                                                                  |
| infoType parameters (table),                                  | considerations, 2-113                                                                          |
| 2-424 to 2-425                                                | status codes                                                                                   |
| infoValue parameters (table),                                 | format, 1-1                                                                                    |
| 2-445 to 2-447                                                | status values (table), 1-1                                                                     |
| using the function, 2-427 to 2-433                            | , , , ,                                                                                        |
| signal name equivalencies, E series and                       | _                                                                                              |
| 671 <i>X</i> (table), 2-420                                   | T                                                                                              |
| single period measurement application,                        | technical support resources, D-1 to D-2                                                        |
| 2-234 to 2-236                                                | Timeout_Config function, 2-434 to 2-435 timing diagrams, Mode 0 through Mode 5, 2-271 to 2-272 |
| single pulse generation application,<br>2-244 to 2-246        |                                                                                                |
|                                                               |                                                                                                |
| single pulse width measurement application,<br>2-236 to 2-238 |                                                                                                |
|                                                               |                                                                                                |
| single triggered pulse generation application,                |                                                                                                |

2-246 to 2-248

| trigger functions                       | NI-DAQ function support (table)            |
|-----------------------------------------|--------------------------------------------|
| Config_ATrig_Event_Message,             | analog output family of devices, C-11      |
| 2-68 to 2-71                            | DSA devices, C-9                           |
| Configure_HW_Analog_Trigger,            | Lab/516/DAQCard-500/700                    |
| 2-84 to 2-90                            | devices, C-7                               |
| DAQ_StopTrigger_Config, 2-141 to        | MIO and AI devices, C-4                    |
| 2-142                                   | WFM_Chan_Control function,                 |
| trigger generation                      | 2-436 to 2-437                             |
| ND_ABOVE_HIGH_LEVEL signal              | WFM_Check function, 2-438 to 2-439         |
| (figure), 2-86                          | WFM_ClockRate function,                    |
| ND_BELOW_LOW_LEVEL signal               | 2-440 to 2-444                             |
| (figure), 2-86                          | WFM_DB_Config function,                    |
| ND_HIGH_HYSTERESIS signal               | 2-445 to 2-446                             |
| (figure), 2-87                          | WFM_DB_HalfReady function,                 |
| ND_INSIDE_REGION signal                 | 2-447 to 2-448                             |
| (figure), 2-87                          | WFM_DB_Transfer function,                  |
| ND_LOW_HYSTERESIS signal                | 2-449 to 2-450                             |
| (figure), 2-87                          | WFM_from_Disk, 2-451 to 2-453              |
| triggered pulse generation application, | WFM_Group_Control function,                |
| 2-246 to 2-248                          | 2-454 to 2-455                             |
| triggered pulse width measurement       | WFM_Group_Setup function,                  |
| applications, 2-238 to 2-241            | 2-456 to 2-457                             |
|                                         | WFM_Load function, 2-458 to 2-461          |
| V                                       | WFM_Op, 2-462 to 2-464                     |
| <del>-</del>                            | WFM_Rate function, 2-465 to 2-466          |
| variable data types, 1-2 to 1-4         | WFM_Scale function, 2-467 to 2-468         |
| arrays, 1-3                             | WFM_Set_Clock function,                    |
| multiple types, 1-3 to 1-4              | 2-469 to 2-470                             |
| primary type names (table), 1-2 to 1-3  | Web support from National Instruments, D-1 |
| Visual Basic for Windows, 1-4 to 1-5    | to D-2                                     |
| voltage calculation, B-8 to B-9         | online problem-solving and diagnostic      |
| voltage or current output parameters,   | resources, D-1                             |
| 2-29 to 2-30                            | software-related resources, D-2            |
|                                         | Worldwide technical support, D-2           |
| W                                       |                                            |
| VV                                      |                                            |

1-8 to 1-9

waveform generation functions definition, 1-13

LabWindows/CVI function panel tree,